United States Department of the Interior
National Park Service

National Register of Historic Places
Registration Form

This form is for use in nominating or requesting determination for individual properties and districts. See instruction in How to Complete the National Register of Historic Places Registration Form (National Register Bulletin 16A). Complete each item by marking "x" in the appropriate box or by entering the information requested. If an item does not apply to the property being documented, enter "N/A" for "not applicable." For functions, architectural classification, materials and areas of significance, enter only categories and subcategories from the instructions. Place additional entries and narrative items on continuation sheets (NPS Form 10-900a). Use a typewriter, word processor, or computer, to complete all items.

1. Name of Property

historic name Denver & Rio Grande Railroad San Juan Extension (boundary clarification/ increase; add. documentation)
other names/site number Cumbres & Toltec Scenic Railroad; 5AA664; 5CN65

2. Location

street & number Railway corridor from Antonito, Colorado to Chama, N. M. via Cumbres Pass [N/A] not for publication
city or town Antonito [X] vicinity
state Colorado code CO county Conejos code 021 zip code 81120

3. State/Federal Agency Certification

As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this [X] nomination [] request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property [] meets [] does not meet the National Register criteria. I recommend that this property be considered significant [X] nationally [] statewide [] locally. ([] See continuation sheet for additional comments.)

Signature of certifying official/Title
Deputy State Historic Preservation Officer
Office of Archaeology and Historic Preservation, Colorado Historical Society
State or Federal agency and bureau

In my opinion, the property [] meets [] does not meet the National Register criteria.
([] See continuation sheet for additional comments.)

Signature of certifying official/Title
State or Federal agency and bureau

4. National Park Service Certification

I hereby certify that the property is:

[] entered in the National Register
[] See continuation sheet.
[] determined eligible for the National Register
[] See continuation sheet.
[] determined not eligible for the National Register.
[] removed from the National Register
[] other, explain
[] See continuation sheet.

Signature of the Keeper
Date of Action
5. Classification

<table>
<thead>
<tr>
<th>Ownership of Property</th>
<th>Category of Property</th>
<th>Number of Resources within Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>[X] private</td>
<td>[] building(s)</td>
<td>15 [] buildings</td>
</tr>
<tr>
<td>[] public-local</td>
<td>[X] district</td>
<td>15 [] sites</td>
</tr>
<tr>
<td>[X] public-State</td>
<td>[] site</td>
<td>209 [] structures</td>
</tr>
<tr>
<td>[] public-Federal</td>
<td>[] structure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[] object</td>
<td></td>
</tr>
</tbody>
</table>

Name of related multiple property listing.
(Enter "N/A" if property is not part of a multiple property listing.)

Railroads in Colorado 1858-1948

Number of contributing resources previously listed in the National Register.

25

6. Function or Use

<table>
<thead>
<tr>
<th>Historic Function</th>
<th>Current Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transportation-rail related</td>
<td>Transportation-rail related</td>
</tr>
<tr>
<td>Recreation and Culture</td>
<td>Recreation and Culture</td>
</tr>
</tbody>
</table>

7. Description

<table>
<thead>
<tr>
<th>Architectural Classification</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Late 19th and Early 20th Century</td>
<td>foundation Concrete</td>
</tr>
<tr>
<td>American Movements</td>
<td>walls Weatherboard</td>
</tr>
<tr>
<td></td>
<td>Log</td>
</tr>
<tr>
<td></td>
<td>Stone</td>
</tr>
<tr>
<td></td>
<td>roof Shingle</td>
</tr>
<tr>
<td></td>
<td>Asphalt</td>
</tr>
<tr>
<td></td>
<td>other Steel</td>
</tr>
</tbody>
</table>

Narrative Description
(Describe the historic and current condition of the property on one or more continuation sheets.)
8. Statement of Significance

Applicable National Register Criteria
(Mark "x" in one or more boxes for the criteria qualifying the property for National Register listing.)

[X] A Property is associated with events that have made a significant contribution to the broad patterns of our history.
[] B Property is associated with the lives of persons significant in our past.
[X] C Property embodies the distinctive characteristics of a type, period, or method of construction or represents the work of a master, or possesses high artistic values, or represents a significant and distinguishable entity whose components lack individual distinction.
[] D Property has yielded, or is likely to yield, information important in prehistory or history.

Criteria Considerations
(Mark "x" in all the boxes that apply.)

Property is:
[] A owned by a religious institution or used for religious purposes.
[] B removed from its original location.
[] C a birthplace or grave.
[] D a cemetery.
[] E a reconstructed building, object, or structure.
[] F a commemorative property.
[] G less than 50 years of age or achieved significance within the past 50 years.

Areas of Significance
(Enter categories from instructions)

Transportation
Engineering
Commerce

Periods of Significance
1880-1967

Significant Dates
1880

Significant Person(s)
(Complete if Criterion B is marked above).
N/A

Cultural Affiliation
N/A

Architect/Builder
Denver & Rio Grande Railroad
Baldwin Locomotive Works
National Car Company
American Car & Foundry

Narrative Statement of Significance
(Explain the significance of the property on one or more continuation sheets.)

9. Major Bibliographical References

Bibliography
(Cite the books, articles and other sources used in preparing this form on one or more continuation sheets.)

Previous documentation on file (NPS):
[] preliminary determination of individual listing (36 CFR 67) has been requested
[X] previously listed in the National Register
[] previously determined eligible by the National Register
[] designated a National Historic Landmark
[] recorded by Historic American Buildings Survey

#______________________________

[] recorded by Historic American Engineering Record

#______________________________

Primary location of additional data:
[X] State Historic Preservation Office
[] Other State Agency
[] Federal Agency
[] Local Government
[] University
[X] Other

Name of repository:
Colorado Historical Society
Friends of the Cumbres & Toltec Scenic Railroad
10. Geographical Data

Acreage of Property 1,430 Acres

UTM References
(Place additional UTM references on a continuation sheet.)

1. Zone Easting Northing
2. Zone Easting Northing
3. Zone Easting Northing
4. Zone Easting Northing

[X] See continuation sheet

Verbal Boundary Description
(Describe the boundaries of the property on a continuation sheet.)

Boundary Justification
(Explain why the boundaries were selected on a continuation sheet.)

11. Form Prepared By

name/title Keith E. Hayes, AIA (prepared for the property owners)
organization Friends of the Cumbres & Toltec Scenic Railroad date October 10, 2005
street & number 6005 Osuna Road Northeast telephone (505) 880-1311
city or town Albuquerque state NM zip code 87109

Additional Documentation

Submit the following items with the completed form:

Continuation Sheets

Maps
A USGS map (7.5 or 15 minute series) indicating the property's location.
A Sketch map for historic districts and properties having large acreage or numerous resources.

Photographs
Representative black and white photographs of the property.

Additional Items
(Check with the SHPO or FPO for any additional items)

Property Owner
(Complete this item at the request of SHPO or FPO.)

name see continuation sheet
street & number ____________________________ telephone ______________
city or town ____________________________ state ________ zip code _____

Paperwork Reduction Act Statement: This information is being collected for applications to the National Register of Historic Places to nominate properties for listing or determine eligibility for listing, to list properties, and to amend existing listings. Response to this request is required to obtain a benefit in accordance with the National Historic Preservation Act, as amended (16 U.S.C. 470 et seg)
LOCATION (continued)

State: Colorado
County: Archuleta
Code: 007

City or town: Chama
State: New Mexico
Code: NM
County: Rio Arriba
Code: 039

STATE/FEDERAL AGENCY CERTIFICATION (continued)

As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property meets the National Register criteria. I recommend that this property be considered significant nationally or state or locally. (See continuation sheet for additional comments.)

State Historic Preservation Officer

Signature of certifying official/Title

Date

State or Federal agency and bureau
PURPOSE OF AMENDMENT

The purpose of this amendment to the registration form for the 1973 National Register listing of the Cumbres and Toltec Scenic Railroad is threefold. First, in the original listing, the boundary was only broadly defined and the amendment is clarifying those boundaries to include just the land historically associated with the construction and operation of the Antonito, Colorado, to Chama, New Mexico, portion of the Denver & Rio Grande Railroad's San Juan Extension during the period of significance. In one location, the original district boundaries are being expanded to include the historic Antonito depot as a discontiguous resource.

Second, the original nomination did not fully account for all the historic resources comprising the district. This amendment provides additional resource documentation.

Finally, the additional documentation establishes the district as nationally significant with an extended period of significance encompassing the entire Denver & Rio Grande Railroad’s construction and operation of the rail line from 1880 to 1967.

A word about names. As part of the boom and bust west, the Denver & Rio Grande as a corporate entity was born, died and reborn under a variety of names. These include:

- Denver & Rio Grande Railway, 1870-1886
- Denver & Rio Grande Railroad Company, 1886-1921
- Denver & Rio Grande Western Railroad 1921-1970

The latter name changed as the railroad declared bankruptcy, merged with an affiliated company, reincorporated and finally emerged from bankruptcy again (LaMessena).

When the railroad segment was listed in the National Register in 1973, the name “Cumbres and Toltec Scenic Railroad” was recorded as the official resource name. As this name was not used until after the railroad’s period of significance, this amendment uses the historic name of the property during the period of significance: Denver & Rio Grande Railroad San Juan Extension.” Denver & Rio Grande is used as the phrase common to all the various companies during the period of significance when referring to historical instances and will be used throughout this document. This is also abbreviated as “D&RG.”

When Colorado and New Mexico purchased the Antonito-Chama portion from the D&RG in 1970, the railroad became known as the Cumbres & Toltec Scenic Railroad (C&TS) to distinguish it from the related Silverton Branch still owned and operated at that time by the D&RG. The Silverton Branch was sold in 1981 and is today known as the Durango & Silverton Narrow Gauge Railroad (D&SNG). The latter property is a National Historic Landmark, establishing it as a nationally significant property recognized as a significant feat of engineering and an important element in the nation’s transportation history. Both segments were part of the same rail system, were constructed sequentially, used the same equipment and were operated as a single entity by the same company.
The Antonito to Chama segment preserves a 64-mile portion of narrow gauge main line that originally extended between Alamosa and Durango, Colorado. The 1923 *Official Roster No. 11 of the Denver & Rio Grande Western Railroad System* classified the Alamosa to Durango route as the Fourth Division—Second District. At Durango, branch lines extended to the north—serving the rock mineral basin at Silverton—and south—serving the oil and gas mineral basin at Farmington. The Rio Grande Southern Railroad extended west and north, connecting Durango with Ridgway, Colorado.

The D&GR’s route straddles a cultural divide where Anglo names meet Spanish. Place names are cited as spelled by the railroad. For example, the railroad spelled the place name “Big Horn,” while the nearby geologic feature is “Bighorn Peak.” The rail route also straddles the boundary between two states, and several place names occur both in Colorado and New Mexico.

NARRATIVE DESCRIPTION

A. SIGNIFICANT PLACE NAMES

The right-of-way consists of 64 miles of three-foot gauge railroad track between the communities of Antonito, Colorado, and Chama, New Mexico, along the Colorado-New Mexico border. Trackage crosses the state border eleven times, sometimes multiple crossings within hundreds of feet. The route travels over Cumbres Pass at an elevation of 10,015 feet and passes through the following sites along the way (listed east to west with their mile (MP or milepost) distance from Denver, Colorado, according to Doris Osterwald in *Ticket to Toltec)*:

1. **East End of Track**, MP 280.40
2. **Antonito, Colorado** MP 280.70, elevation 7,888 feet
3. **Lava, New Mexico** MP 291.55, elevation 8,468 feet
4. **Big Horn Section House, Colorado** MP 296.0, elevation 8,790 feet
5. **Big Horn, New Mexico** MP 299.41, elevation 9,022 feet
6. **Sublette, New Mexico** MP 306.06, elevation 9,276 feet
7. **Tunnel No 1, New Mexico** MP311.3, elevation 9,465 feet
8. **Tunnel No. 2, New Mexico** MP 315.2, elevation 9,580 feet
9. **Osier, Colorado** MP 318.40, elevation 9,637 feet
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico

Railroads in Colorado 1858-1948 MPS

Section number 7 Page 4

10. Cascade Trestle, Colorado MP 319.95
11. Los Pinos, Colorado MP 325.50, elevation 9,706 feet
12. Apache Canyon, Colorado MP 327.6
13. Cumbres, Colorado MP 330.60, elevation 10,015 feet
14. Coxo, Colorado MP 332.20, elevation 9,753 feet
15. Cresco, Colorado MP 335.10, elevation 9,193 feet
16. Lobato Trestle, New Mexico MP 339.75
17. Lobato, New Mexico MP 339.99, elevation 8,303 feet
18. Rio Chama Crossing, New Mexico MP 343.60
19. Chama, New Mexico MP 344.12, elevation 7,863 feet
20. West End of Track, MP 344.80

B. THE NATURAL SETTING

The route traverses several distinctive landscapes. These vary in topography, geology and vegetation.

1. The High Plains: Antonito, Colorado, to Lava, New Mexico

The portion immediately west of Antonito is part of the San Luis Valley. It is a broad, flat grassland, typical of several inner-mountain 'parks' located in Colorado and northern New Mexico. The plant life is almost desert-like with grasses, small flowers and cacti. The roadbed features long straight sections barely above the adjacent landscape, curving to follow the higher landforms with a gentle 1.65 percent gradient. The track crosses several dry washes using culverts and small trestles, the largest of which is Hangman’s Trestle (MP 285.87). East of Lava, the track ascends to the top of the first mesa on a broad loop of track.

2. The Mesas: Lava, New Mexico, to Big Horn, New Mexico

Between Lava and Big Horn, locating engineers surveyed broad loops in order that the track would rise to the next level of landscape. The tops of the mesas receive a bit more moisture, and the plants are more montaine. Small clusters of ponderosa pine and aspens mingle with the grasses and flowers. In general, the track is still at the level of the adjacent landscape, but the roadbed crosses deeper ravines and curves broadly through valleys and around slopes as it maintains the gentle 1.6 percent grade. The last of these loops is known as “The Whiplash” where the track loops to the south, then back north and south again in order to gain elevation. The lowest loop was the site of the Big Horn section house in Colorado (MP 296.00). Bighorn Peak is a prominent geologic feature.

3. Lower Toltec Gorge: Big Horn, New Mexico, to Tunnel No. 1, New Mexico

West of Big Horn the right-of-way encounters the Los Pinos River and Lower Toltec Gorge. The valley is wide here, and the track follows the contours looping in and out of tributary basins. Sublette, New Mexico (MP 306.06) is at the end of one of these loops. The track runs perpendicular to the slope, and
occasionally rock cuts are necessary to cross the toe of a hill. Aspen and fir trees are the dominant plant feature and an occasional fishing cabin is visible along the river below.

4. **Upper Toltec Gorge: Tunnel No. 1, Colorado, to Osier, Colorado**

Perhaps the most dramatic natural feature of the route is Toltec Gorge, a rock canyon 600-feet deep created by the Los Pinos River (MP 315.2). The native slopes in this area are much steeper, and engineers depended upon short stretches of fill to bridge ravines in the landscape. Instead of going around ridges, the track tunnels through them at two locations. Trees and shrubs appear in the cracks among the rock.

5. **Lower Los Pinos Valley: Osier, Colorado, to Los Pinos Telegraphone Booth, Colorado**

At Osier (MP 318.4), the track emerges into a broad, high valley bordered by peaks on either side. Trees cover the slopes with grasses predominating in the valleys. Tributary valleys are narrow and steep, so the track crosses these on fills and a high viaduct at Cascade Creek (MP 319.95).

6. **Upper Los Pinos Valley: Los Pinos Telegraphone Booth, Colorado, to Los Pinos Tank, Colorado**

At the Los Pinos Telegraphone booth (MP 322.90) the track emerges into a broad high valley. Here the river is broad and slow and cattle graze along the banks. The track crosses the river on a long trestle and loops back towards Cumbres Pass threading through stands of pine and spruce.

7. **Cumbres Pass: Los Pinos, Colorado, to Windy Point, Colorado**

Los Pinos tank (MP 325.5) is at the west end of the loop and just below the conifer forest that blankets the summit. The roadbed hugs the hillside to maintain the 1.67 percent grade. Just below the summit, the track loops to the east in a giant hairpin configuration known as Tanglefoot Curve (MP 329.8). At the top of the loop is the east end of the Cumbres yard. The summit proper is further west, near the highway crossing (MP 330.60).

8. **The Steep Descent: Windy Point, Colorado, to Lobato, New Mexico**

From Cumbres, the track descends a steep 4 percent grade towards the Chama Valley. Apparently, locating engineers were more cognizant of grades favoring loaded trains traveling west than those hauling material east. After crossing a short trestle over the old highway, the track loops around a rock outcrop on a fill at Windy Point. From here there are spectacular views of the valley to the south. The roadbed clings to the side of the steep cross slope, curving through stands of aspen and conifer forest. There is a short bench below Windy Point at Coxo (MP 332.20) where the track crosses Highway 17. West of this point, the track continues to move across the hillside on alternating stretches of cut and fill, well above Wolf Creek below. Just above Lobato, the hills are gentler and the track emerges into a broad valley lined with trees.
9. **The Narrows: Lobato, New Mexico, to State Highway 17 Crossing, New Mexico**

At Lobato (MP 339.99) the track loops to the Wolf Creek Gorge. This small watercourse created a 100-foot-deep canyon that is traversed by a dramatic steel viaduct similar to that at Cascade Creek. Across the creek, the right-of-way follows the gentle valley to the Narrows, a second and much smaller gorge where the track is on a slightly less dramatic ledge. West of the Narrows, the grade diminishes and the roadbed emerges onto a relatively flat straight stretch of track crossing grassland dotted with low shrubs.

10. **The Chama Valley: State Highway 17 Crossing, New Mexico, to Chama, New Mexico**

West of the Narrows, the landscape changes from the conifer forests of the mountains to the cottonwood-lined riparian landscape of the Rio Chama. Shortly after the last highway crossing, the railroad crosses the Rio Chama on a multiple-span through truss bridge (MP 343.60) and enters Chama proper on a plateau just above and parallel to the river and below the town.

C. **TRACKAGE AS A CONTRIBUTING RESOURCE**

The Antonito to Chama segment is only a portion of the one-time 600-plus-mile narrow gauge system operated by the Denver & Rio Grande in the mountains of Colorado and New Mexico. This remaining trackage comprises an entire operational segment featuring passing tracks and sidings built in the 1880s and extant as-is since the 1920s. Included as part of this resource are the many signs that mark the mile locations, state boundaries, speed limits, stations and sites. While many of the track features were used on a daily basis, some of the most interesting features relate to seasonal use. With the exception of the recent loop addition at Osier (constructed in 1993) and trackage at Antonito (constructed in 1977), all trackage is historic and considered a single contributing structure.

1. **Antonito, Colorado**

Current trackage consists of a balloon loop, engine service spurs and several display sidings, all dating from the post-1971 period. The historic right-of-way lies just north of the new depot and is still used by the San Luis and Rio Grande Railroad. It has been revised from narrow gauge (3'-0") to standard gauge (4'-8½"). Between 1901 and 1971, the trackage between Alamosa and Antonito was dual gauge—that is a third rail allowed operation of both standard gauge and narrow gauge equipment, sometimes in the same train (Hereford and Robart). The third rail was removed in 1971, and only a sign marking the end of standard gauge track west of the new depot remains.
2. **Lava, New Mexico**
 This site features a short cross-over at the neck of the loop that creates a balloon loop used to turn winter snow plow trains. The loop favors eastbound trains and was constructed in 1922 (Osterwald).

3. **Big Horn, New Mexico**
 A 1,184-foot long siding and wye are located here; the wye has a long tail track to facilitate turning trains, particularly snow-removal trains. A wye is a triangular-shaped track arrangement used to turn trains around: The main line is usually along one leg of a triangle and the tail extends from a point opposite this leg.

4. **Sublette, New Mexico**
 A 949-foot long siding is located here.

5. **Toltec, New Mexico**
 At 3,400 feet in length, Toltec is one of the longest passing sidings on the railroad. At one time this was a flag stop and section house site. In later years, the siding was extended to accommodate long trains originating in Alamosa and Farmington.

6. **Osier, Colorado**
 A 1,699-foot long siding and spur represent the historic trackage at Osier. This is the half-way point on the railroad and is the meeting point of the present-day east- and west-bound C&TS tourist trains. A balloon loop was constructed at the east end of the site in 1993 to more easily turn those trains originating in Chama.

7. **Los Pinos, Colorado**
 A 1,850-foot long siding is located here along the longest stretch of straight track on the line, almost ¾ of a mile in length.

8. **Cumbres, Colorado**
 The highest point of the railroad features several long sidings (the longest is 3,629 feet) and a wye, used to turn helper locomotives which are still used. Loaded trains were moved across the steep (4 percent) grade from Chama to Cumbres in multiple sections and assembled at Cumbres for the remainder of the trip down hill to Antonito. The trackage and structures also accommodated snow plow train operation in winter months.

9. **Cresco, New Mexico**
 A 1,702-foot long siding is located here.
10. **Lobato, New Mexico**

A 1,150-foot long siding is located here.

11. **Chama, New Mexico**

Chama features all of the components of a typical small railroad division point of the early twentieth century. These track features include a yard with a number of sidings for assembling trains, a locomotive servicing area, a scale track to weigh cars (and their load), and a wye for turning locomotives. Prior to 1946, a turntable was located at Chama. It was removed when a change in operations resulted in locomotive crews being based at other locations.

D. BUILDINGS, STRUCTURES, SITES AND OBJECTS

Each of the place names has a number of contributing buildings and structures that are representative of railroad right-of-way structures in the early- to mid-twentieth century. The mile post is given where the location of the building varies from the place name. In the site maps that follow, noncontributing resources are marked by an "NC" notation. Numbered boxes with arrows indicate photograph numbers, positions and views.

1. **Antonito, Colorado**

![Diagram of Antonito, Colorado](image)
a. Historic Depot

The historic depot, located within the standard gauge wye (now owned by the Town of Antonito), dates from the 1880s. The building is of masonry construction using rhyolite, similar to the Lava pump house. It has stone foundations and walls, with an asphalt shingle roof. Typical of railroad depots, there is a waiting room and ticket window on one end, an operator bay on the track side, rooms for the agent’s residence, and a large room with an elevated floor for storage of freight and express items. The building was abandoned in 1971 and was identified as a threatened historic resource several years ago. The building and the land was conveyed to the Town of Antonito. The building is in poor condition and is a contributing resource.

b. Water Tank

The water tank at Antonito is representative of a standard D&RG design and holds 50,000 gallons. Pump-fed, this structure was originally located at La Jara, Colorado, and was moved to Antonito when the Antonito tank was moved to Lava in 1973. It has concrete foundations, a wood structure and roof. It is in good condition. Though relocated into the district after the end of the period of significance, the circa 1880 structure is considered to be a contributing resource for its association with the engineering significance of the district. (See photo 4.)

c. New Depot

A new depot was constructed by the Joint Railroad Authority in 1977 and is a replica of an 1882-era wood depot with waiting room, ticket offices and toilets to provide passenger accommodations. It has concrete foundations, is of wood construction and has an asphalt roof. This building is a noncontributing resource and is in good condition. (See photo 3.)
d. New Engine House and Addition

A new engine house was constructed in 1974 for locomotive servicing and storage; an addition was constructed in 1979 and serves primarily as a car shop. Both buildings have concrete foundations, concrete and masonry structures, and pre-cast concrete roofs. The engine house is a noncontributing resource and is in good condition.

e. Commission Office

The building, now used as the office of the Bi-State Railroad Commission, was constructed after 1971 as the first depot for the newly-formed Cumbres & Toltec Scenic Railroad, since the historic depot was not included in the sale. The building has a concrete foundation, wood-frame walls and a composition shingle roof. It is a noncontributing resource and is in good condition.

f. Section Car Shed

The section car shed was constructed after 1971 to replicate similar buildings located along the line that house track maintenance equipment. This building has a wood foundation and walls and an asphalt roof. It is a noncontributing resource and is in good condition.

g. Storage Building

The railroad and the Friends of the Cumbres & Toltec Scenic Railroad (a nonprofit support group hereafter referred to as “Friends”) most recently used the building to store materials. It was built as a lunchroom facility for a saw mill that once occupied this portion of the property. The storage building is the only surviving saw mill resource. It has a concrete foundation, concrete masonry unit walls and an asphalt shingle roof. It is in good condition and is a noncontributing resource.

h. Car Repair Facility

In 2004-2005, the Friends of the Cumbres and Toltec constructed a metal building to house rolling stock restoration activities in Antonito. The structure has concrete foundations, a steel structure and a metal roof. It is in good condition and is a noncontributing resource.

i. Three-rail Track Display

The Friends salvaged a dual-gauge track turnout from Alamosa and reconstructed it in the yard at Antonito to illustrate the complexity of this kind of trackage. The track section is a noncontributing resource.

2. Hangman’s Trestle, Colorado

<table>
<thead>
<tr>
<th>Hangman’s Trestle, Colorado</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buildings</td>
<td>Structures</td>
</tr>
<tr>
<td>a. Trestle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
a. **Trestle (MP 285.87)**

At this point the track crosses a dry wash via a five-panel frame trestle of typical D&RG design (Osterwald). The structure is in good condition and is a contributing resource.

3. **Lava, New Mexico**

<table>
<thead>
<tr>
<th>Lava, New Mexico</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Water Tank</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. Pump House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

a. **Water Tank**

The water tank at Lava was formerly located at Antonito and moved to Lava in 1973 when the original water tank was consumed in a fire attributed to a careless smoker. The tower is representative of a standard D&RG design and holds 50,000 gallons. It received water from a pump house located along the river below the tank. The tank has not been used since the early 1970s due to the removal of pump house equipment. It has concrete foundations, a wood structure and wood roof and is a contributing resource. It is in poor condition due to its having stood dry for 30-plus years. Though relocated after the end of the period of significance, the circa 1880 structure was moved within the district and is considered to be a contributing resource for its association with the engineering significance of the district. (See photo 10.)
b. **Pump House**

The pump house is located along the Los Pinos River, over 500 feet below Lava Tank. The pump house is a small masonry structure constructed with a hewn lava foundations and walls using techniques similar to those used on the Antonito depot. It features a frame roof and wood shingles and is in poor condition. All machinery has been removed. A home was also located here for the pumper, which has since been removed. The pump house is a contributing resource.

4. **Big Horn Section House, Colorado**

<table>
<thead>
<tr>
<th>Big Horn Section House, CO</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Section House Site</td>
<td>Buildings</td>
<td>Sites</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

a. **Section House and Bunk House Site**

A section house, two bunk houses and outbuildings were located inside the lowest loop of the Whiplash. The section house was of the same design as those existing at Sublette, Osier and Cumbres. One bunk house resembled those at Sublette and Chama, the other
was a railcar body. All buildings were removed by 1965 (Osterwald). Railroad valuation maps indicate this site also included another car body used as a storage building, along with coal houses and several privies. This site is a contributing resource. (See photo 11.)

5. Big Horn, New Mexico

<table>
<thead>
<tr>
<th>Big Horn, New Mexico</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Telegraphone Booth</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

a. **Telegraphone Booth** (MP 299.7)

The Telegraphone booth is an example of several similar buildings along the line used for communication with the dispatcher in Alamosa. All have earthen foundations, wood structures and roofs. The building at Big Horn, restored by the Friends in 2005, is in good condition. This building is a contributing resource.

6. Sublette, New Mexico

<table>
<thead>
<tr>
<th>Sublette, New Mexico</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Shingle Bunk House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. Log Bunk House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c. Section House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d. Water Column</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e. Powder Storage Site</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

![Sublette, New Mexico map]
a. **Shingle Bunk House**

This bunk house, so named because it is sided with wood shingles, is a small building used to house section crews. It has a wood foundation, frame walls and an asphalt shingle roof. This building was stabilized between 1992 and 1994 and is in good condition. This building is a contributing resource.

b. **Log Bunk House**

The log bunk house is representative of a standard D&RG design, two of which still exist in the district. These buildings have wood foundations, log walls and wood roofs. This building was stabilized between 1992 and 1995 and is in good condition. Sublette also features several historic outbuildings used for material storage. One was converted from a surplus rail car. All have earthen foundations, wood walls and wood roofs. This is a contributing resource.

c. **Section House**

The section house is representative of a standard D&RG design, three of which survive in the district. Similar buildings were once located at Big Horn and Toltec. All have stone and concrete foundations, with wood structures and roofs. The building at Sublette features several additions at the back of the building made by the D&RG at unknown dates. This building was stabilized between 1991 and 1996 and is in good condition. The section house had two outbuildings: a coal house which still stands and a privy that no longer exists. The coal house has earthen foundations, wood walls and a wood roof. The section house is a contributing resource.

d. **Water Column**

The water column—or standpipe—is a vertical pipe that extends above the ground to tender height with a spout that can swing over the track. Integral to the column is a valve mechanism used to control the flow of water. It replaced a water tank that was across the track at this location until 1937 (Osterwald). Water is now stored in a reservoir uphill of the track, and piped to locomotive tenders via the column. The water column is in good condition. The foundation is concrete and the remainder of the standpipe is steel. This structure is a contributing resource.

e. **Powder Storage Site**

About 1/10 mile west of Sublette on the south side of the track at the top of the hill are the remains of a cache used to store blasting powder during construction of the railroad. The site is contributing.
7. Toltec, New Mexico

<table>
<thead>
<tr>
<th></th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toltec, New Mexico</td>
<td>Buildings</td>
<td>Structures</td>
</tr>
<tr>
<td>a. Telegraphone Booth</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

a. **Telegraphone Booth (MP 310.5)**

Two sites use the Toltec name, and as at Big Horn, there is one in each state. The first is at Toltec Siding, where a Telegraphone booth is located. The Telegraphone booth is an example of several similar structures along the line used for communication with the dispatcher in Alamosa. This particular example is a wood box with an asphalt roof mounted on a pole. The building at Toltec was stabilized by the Friends in 2002 and is in fair condition. This building is a contributing resource.

8. **Tunnel No. 1 (Mud Tunnel), New Mexico**
<table>
<thead>
<tr>
<th>Tunnel No. 1, New Mexico</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Telegraphone Booth</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. Tunnel No. 1 (Mud Tunnel)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c. Shoo Fly</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1 2 0 0 0</td>
<td>0 0 0</td>
</tr>
</tbody>
</table>

a. **Telegraphone Booth** (MP 311.2)

The Telegraphone booth is an example of several similar buildings along the line used for communication with the dispatcher in Alamosa. All have earthen foundations, wood structures and roofs. The building at Mud Tunnel is in poor condition and is a contributing resource.

b. **Mud Tunnel** (MP 311.3)

Tunnel No. 1 or Mud Tunnel is so called because the soil at this location is composed of volcanic ash that turns to mud with the addition of water (Osterwald). Consequently, this tunnel is lined with timber to prevent collapse, similar to other tunnels that bore through unstable soils.

At either end of the tunnel is a telltale, a structure developed by railroads to alert trainmen on top of rail cars to the upcoming tunnel. The structures at Tunnels No. 1 and No. 2 are constructed of a metal pipe frame, which forms an arch over the track. At the top of the arch, multiple ropes hang from the pipe with weights at the end of each rope. Should trainmen be on top of the cars—setting brakes for example—the ropes would knock them down before the train entered the tunnel.

Tunnels No. 1 and No. 2 are the only tunnels along the D&RG narrow gauge lines. Tunnel No. 1 was inspected in 2001 and 2004, and relined in 2004, and is in good condition. This structure is a contributing resource.

c. **Shoo Fly**

Tunnel No. 1 is also the site of a shoo fly, a railroad term for a temporary track. In this case, a temporary track alignment was required to maintain rail service around the tunnel when it was relined after a fire early in the twentieth century (Osterwald). The grade for the shoo-fly is in fair condition and is a contributing resource.
9. Toltec Section House, Colorado

The second Toltec site is at Toltec Section House, Colorado, three miles past Toltec Siding and just beyond Calico Cut. This location is now marked with a sign calling it “Toltec Creek.” A section house was located at this point and was of the same design as those existing at Sublette, Osier and Cumbres. A bunk house and water tank were also constructed at this location, along with several railcar bodies used for storage, a coal house and privy. The section house was removed in 1938, and the other structures in 1925 (Osterwald). This site is a contributing resource.

10. Phantom Curve, Colorado

So named because the geologic forms in the center of the loop create eerie shadows at sunset. The forms are composed of breccias of the Conejos Formation that have been weathered by wind, snow and rain (Osterwald).
11. Tunnel No. 2 (Rock Tunnel), New Mexico

The Telegraphone booth is an example of several similar buildings along the line used for communication with the dispatcher in Alamosa. All have earthen foundations, wood structures and roofs. The building at Rock Tunnel was restored by the Friends in 2005 and is in good condition. This building is a contributing resource.

b. Rock Tunnel (MP 315.2)

Tunnel No. 2, or Rock Tunnel, bores through a ridge of gneiss and schist of sufficient stability that wood lining is not required as at Tunnel No. 1. It is possible to see the natural rock interior from the train (Osterwald).

At either end of the tunnel is a telltale, a structure developed by railroads to alert trainmen on top of rail cars to the upcoming tunnel. The structures at Tunnels 1 and 2 are constructed of a metal pipe frame, which forms an arch over the track. At the top of the arch, multiple ropes hang from the pipe with weights at the end of each rope. Should trainmen be on top of the cars—setting brakes for example—the ropes would knock them down before the train entered the tunnel.
Directly west of the tunnel, the track crosses a sheer rock cliff. Early photos indicate that the track crossed this cliff on a short wood trestle. This was replaced with a stone retaining wall and makes for a particularly dramatic exit from the west portal of the tunnel.

Tunnels No. 1 and No. 2 are the only tunnels along the D&RG narrow gauge lines. The tunnel was inspected in 2001 and is in good condition. This structure is a contributing resource.

c. Garfield Monument (MP 315.32)

This monument was dedicated in 1881 to President James Garfield, who was assassinated within six months of assuming office. Members of the Association of General Passenger and Ticket Agents, who held a memorial service at this location upon hearing the news, paid for the monument (Osterwald). It is constructed of stone on a concrete base. This object is a contributing resource.

12. Osier, Colorado
a. **Dining Hall**

A new dining hall was constructed in 1989 along the track to the south of the historic depot and section house. It uses modern construction methods with a concrete foundation, wood-frame walls and an asphalt shingle roof. This building is a noncontributing resource.

b. **Livestock Loading Pens**

Livestock pens were located in prominent towns along the narrow gauge and at points near summer pasture lands as at Osier. These pens feature a number of corrals connected by gates to a loading chute or chutes. The fences are typically constructed of wood rails and posts, both variously peeled and unpeeled logs, hewn and sawn planks, depending upon the materials being available at the time of construction and repair. The loading pens at Osier are in good condition, having been partially restored in 2005. This structure is a contributing resource.

c. **Section House**

The section house is representative of a standard D&RG design, three of which survive in the district. The building at Osier, built in 1881, features several additions at the back of the building made by the D&RG at unknown dates. It was formerly used as the dining hall from 1971 to 1988. The building has concrete foundations, wood-frame walls and a wood shingle roof. This building was renovated in 1993-2004 and is in good condition. Valuation maps indicate several outbuildings—notably privies—existed at Osier; the remains of two survive. This building is a contributing resource.

d. **Depot**

The depot is representative of an early D&RG design constructed in 1881. In the 1970s, it was converted to a restroom for lunchtime patrons. This building was renovated between
1995 and 2001 and is in good condition. The building has an earthen foundation, wood frame walls and roof, and wood shingles. This building is a contributing resource.

e. Water Tank

The water tank at Osier is representative of a standard D&RG design and holds 50,000 gallons. The tower is gravity fed by a spring. This structure has concrete foundations, a wood structure and wood shingle roof. The tank was built in 1880, restored in 2001, and is in good condition. This building is a contributing resource.

f. Coal Platform

The coal platform is typical of early structures located along the railroad for the purpose of storing coal for locomotives. Coal was shoveled into the bin by hand from adjacent gondolas, and later moved to locomotive tenders the same way. In later years, this site was used to stockpile coal used in snow removal operations and for stranded trains. The bin is of wood construction resting on wood foundations. The structure is in poor condition. This structure is a contributing resource.

g. Turntable Site

A covered turntable was located in Osier prior to 1927 (Osterwald). This was located at the end of the existing spur beyond the coal bin. The turntable itself was 50'-0" long and enclosed in a 60'-0" diameter wood shed, all dating from 1888. The site is a contributing resource.

h. Bunk House Site

A log bunk house similar to those existing at Sublette and Chama was located beyond the turntable site. This site is a contributing resource.

13. Cascade Creek, Colorado (MP 319.91)

<table>
<thead>
<tr>
<th></th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade Creek, Colorado</td>
<td>Buildings</td>
<td>0</td>
</tr>
<tr>
<td>a. Deck Plate Girder Trestle</td>
<td>Structures</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

a. Deck Plate Girder Trestle

The bridge at Cascade Creek was constructed in 1889 and replaced an earlier wood trestle built at this location. According to Osterwald as well as Wilson and Glover, the components for the bridge were ordered in 1881 from the Keystone Bridge Company, and parts were
used at other locations throughout the D&RG system until the replacement components were received and installed in 1889. (Replacement components were built by the Detroit Bridge and Iron Works according to Glover). This structure is in good condition and is a contributing resource.

Cascade Trestle is the highest bridge on the line and consists of eight spans resting on seven riveted steel bents, which in turn rest on stone foundation piers. Wilson and Glover note that the design is unusual in that there is no lateral bracing between bents—the Lobato trestle is similar in this respect. Both bridges were designed by Charles Shaler Smith (1836-1886), an engineer who designed one of the Confederacy’s largest powder mills in Augusta, Georgia. Other notable bridges designed by Smith include Kentucky River/ Dixville, KY; Missouri River/ St. Charles, MO; Mississippi River/ Minneapolis, MN; Mississippi River/ Eads Bridge, St. Louis, MO; and numerous bridges for the Atchison, Topeka & Santa Fe and Atlantic & Pacific railroads (Glover).

14. Los Pinos, Colorado
Loveland, Colorado Buildings Structures Sites Buildings Structures
a. Telephone Booths

Total 1 2 1 0 0

a. Telephone Booth (MP 322.9)

The Telephone booth is an example of several similar buildings along the line used for communication with the dispatcher in Alamosa. All have earthen foundations, wood structures and roofs. The Friends restored the building at Los Pinos in 2005. It is a contributing resource.

b. Trestle (MP 324.52)

A trestle carries the track across the Rio de Los Pinos in the middle of a broad valley. The bridge is an eleven-panel wood pile trestle with a ballasted deck typical of D&RG standard bridge designs (Osterwald). The structure is in good condition and is a contributing resource.

c. Water Tank (MP 325.50)

The water tank at Los Pinos is representative of a standard D&RG design and holds 50,000 gallons. The tower is gravity fed by a spring and has concrete foundations, wood construction and a wood shingle roof. This structure is in fair condition and is a contributing resource.

d. Section House Site

A section house was located at this point and was of the same design as those existing at Sublette, Osier and Cumbres. Today stone foundations mark the location of this building, which was removed in 1938 (Osterwald). Valuation maps also indicate a bunk house and several outbuildings, including a coal house and several privies. All were removed with the section house in 1938 (Osterwald). This site is a contributing resource.

15. Apache Canyon, Colorado

<table>
<thead>
<tr>
<th>Apache Canyon, Colorado</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buildings</td>
<td>Structures</td>
</tr>
<tr>
<td>a. Telephone Booths</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
a. **Telegraphone Booth** (MP 327.6)

The Telegraphone booth is an example of several similar buildings along the line used for communication with the dispatcher in Alamosa. All have earthen foundations, wood structures and roofs. The building at Apache Canyon is in good condition and was restored by the Friends in 2002. This building is a contributing resource.

16. Cumbres, Colorado

<table>
<thead>
<tr>
<th>Cumbres, Colorado</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Depot Site</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. Windmill/ Pump House Site</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c. Storage Buildings</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>d. Snowshed</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e. Turntable Site</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>f. Section House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g. Car Inspector’s House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>h. Water Column</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>i. Bunk House Site</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j. Trestle</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Buildings</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributing</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Noncontributing</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
a. **Depot Site**

The depot site is located on the south side of existing trackage, approximately 50 feet east of where Highway 17 crosses the tracks. The depot was constructed in 1882 and demolished by the D&RG in 1954 (Osterwald). A privy was also located south of the depot at the end of a wood plank walk. A coal shed also served the depot. This site is a contributing resource.

b. **Windmill/ Pump House Site**

Prior to 1937, water was pumped from a nearby lake to the Cumbres water tank using wind power. A wind mill and pump house were built in 1881 or 1882. The windmill was replaced by a gasoline engine, which was removed in 1937. A portion of the enclosure survives. This site is a contributing resource.

c. **Storage Buildings**

Two small buildings inside the wye shelter motor cars and tools used for track maintenance. One is a standardized design of metal construction on an earth foundation typical of similar buildings used across the D&RG system after World War II. This building is in fair condition. The second building is wood construction and shows evidence of having been relocated to Cumbres, most likely from elsewhere in the district. It was restored in 2001 and is in good condition. Both buildings are contributing resources.

Another shed, located at the end of the snow shed was constructed in the 1980s using wood doors from the 1970s-era engine house in Antonito when the latter building received new steel doors. The shed is used for track maintenance equipment and is in fair condition. This structure is a noncontributing resource.

d. **Snowshed**

The tail and west leg of the turning wye at Cumbres were at one time totally protected by a snowshed. The structure survived intact until 1979 when all but the portion over the tail of the wye collapsed. The surviving portion was stabilized and restored between 1990 and 1994 using the original design and with similar materials. This large building features wood post and beam construction on earth foundations sheathed with planks, and is representative of snowsheds that once dotted the D&RG system. Doris Osterwald documents 24 of these structures existed along the approaches to Cumbres alone! The snowshed at Cumbres is the sole standing example. This structure is a contributing resource and is in good condition.

e. **Turntable Site**

Between 1884 and 1910, a 50-foot long gallows-frame turntable was located on the south leg of the wye (Osterwald). The turntable was enclosed with a wood structure in 1887 and
attached to the snow shed. Locomotive servicing facilities included a coal bin, sand house and ash pit. This site is a contributing resource.

f. **Section House**

The section house is representative of a standard D&RG design, three of which survive along the C&TS. Similar buildings were once located at Big Horn and Toltec. The section house has a concrete foundation, wood frame walls and a wood shingle roof. The building at Cumbres features several additions at the back of the building made by the D&RG at unknown dates. This building is sometimes mistaken for the Cumbres Depot, which was demolished in 1954. This building was stabilized and restored between 1990 and 2003 and is in good condition. A coal house survives east of the Section House. This structure has a wood foundation and is constructed of wood with a roll asphalt roof and is in good condition. The section house is a contributing resource.

g. **Car Inspector’s House**

Prior to descending the pass, trains are required to stop and perform a test of the air brake system. At Cumbres, an inspector was assigned to help perform and verify this test. Since trains could arrive at any hour, a dwelling was provided by the railroad to house this individual and his family. It is a typical home with an earthen foundation, wood frame walls and a metal roof. This building was stabilized in 1999 by the Friends and is in fair condition. Coal sheds, well housings, livestock enclosures and privies—all now demolished—served the Car Inspector’s House. This building is a contributing resource.

h. **Water Column**

The water column—or standpipe—is a vertical steel pipe that extends above the ground to tender height with a spout that can swing over the track. Integral to the column is a valve mechanism used to control the flow of water. It replaced a water tank that was previously at this location up to 1937 (Osterwald). Water is now stored in an underground reservoir uphill of the track, and piped to locomotive tenders via the column. The water column is in good condition and is a contributing resource.

i. **Bunk House Site**

A bunk house similar to the design as those existing at Sublette and Chama was located beyond the section house. This site is a contributing resource.

j. **Trestle** (MP 330.75)

A six-panel wood pile trestle crosses old State Highway 17 immediately west of the Section House (Osterwald). This trestle is of standard D&RG construction, is in good condition and is a contributing resource.
17. Coxo, Colorado

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coxo, Colorado</td>
<td>Buildings</td>
<td>Structures</td>
</tr>
<tr>
<td>a. Telegraphone Booths</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Telegraphone Booth (approximately MP 332.5)**

The Telegraphone booth is an example of several similar buildings along the line used for communication with the dispatcher in Alamosa. All have earthen foundations, wood structures and roofs. The building at Coxo was stabilized by the Friends in 2002 and is in fair condition. This building is a contributing resource. (See photo 28.)

18. Cresco, Colorado

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cresco, Colorado</td>
<td>Buildings</td>
<td>Structures</td>
</tr>
<tr>
<td>a. Water Tank</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b. Telegraphone Booth</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c. Section House Site</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Water Tank**

The water tank at Cresco is representative of a standard D&RG design and holds 50,000 gallons. It is spring-fed by a pipe, from a spring higher up the hillside. It is built of wood on concrete foundations with a wood shingle roof. This structure is in good condition and is a contributing resource. (See photo 29.)

- **Telegraphone Booth (MP 335.2)**

The Telegraphone booth is an example of several similar buildings along the line used for communication with the dispatcher in Alamosa. All have earthen foundations, wood
structures, and roofs. The building at Cresco is in good condition and is a contributing resource.

c. Section House and Bunk House Site

A section house and bunk house were located south of the water tank. The section house was of the same design as those existing at Sublette, Osier and Cumbres; the bunk house resembled those at Sublette and Chama. Outbuildings at Cresco included a car body used for tool storage, a coal house, and several privies. The section house and all outbuildings were removed in 1938 (Osterwald). This site is a contributing resource.

19. Lobato Trestle (Wolf Creek Crossing), New Mexico (MP 339.75)
Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

<table>
<thead>
<tr>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lobato, New Mexico</td>
<td>Buildings</td>
</tr>
<tr>
<td>a. Deck Plate Girder Trestle</td>
<td>1</td>
</tr>
<tr>
<td>b. Livestock Loading Pens</td>
<td>1</td>
</tr>
<tr>
<td>c. Movie Set</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

a. Deck Plate Girder Trestle

The bridge at Lobato was constructed in 1883 and replaced an earlier wood trestle built at this location. Components for the bridge were ordered from the Keystone Bridge Company (Osterwald). The bridge consists of five spans resting on four riveted steel bents, which in turn rest on stone foundation piers. This structure is in good condition and is a contributing resource.

Wilson and Glover note that the Lobato design is unusual in that there is no lateral bracing between bents—only the Cascade trestle is similar in this respect. Both bridges were designed by Charles Shaler Smith (1836-1886).

b. Livestock Loading Pens

Livestock pens were located in prominent towns along the narrow gauge and at points near summer pasture lands as at Lobato. The pens at Lobato are extensive and feature a number of corrals connected by gates to a loading chute or chutes. The fences are typically constructed of wood rails and posts, both being variously peeled and unpeeled logs, hewn- and sawn planks, depending upon the material available at the time of construction and repair. The loading pens at Lobato are in poor condition. This structure is a contributing resource. (Despite the appearance on the Lobato Trestle site map above, the pens are fully within the district boundary.)

c. Movie Set

Hollywood discovered the D&RG prior to World War II, and many films were shot along the narrow gauge prior to 1968. The railroad remains a popular location for television and movie work. The remains of a set dating from 1970 are at the east end of the siding at Lobato. It was initially constructed for the film “Shootout” starring Gregory Peck (Osterwald). This building—entirely constructed of wood—is in poor condition and is a noncontributing resource.
20. Chama, New Mexico

<table>
<thead>
<tr>
<th>Chama, New Mexico</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Through Truss Bridge</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. Oil Depot</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c. Water Tank</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>d. Log Bunk House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e. Car Body Bunk House</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>f. Coaling Tipple</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>g. Ash Pit</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>h. Sand House/ Storage Bunker</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>i. Warehouse</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>j. Warehouse (site)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>k. Sheep Dip Pens (site)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>l. Roundhouse</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
m. Oil House 1
n. Night Watchman’s Dwelling 1
o. Depot 1
p. Public Toilets 1
q. Track Scale 1
r. Outbuildings 3 1
s. Livestock Loading Pens 1
Total 10 8 2 2 0

a. Through Truss Bridge (MP 343.60)

The steel through truss bridge, which crosses the Rio Chama, is the sole example of this kind of bridge in the district. Similar to a Pratt truss design, the New Jersey Iron & Steel Company built the spans in 1888. According to Wilson and Glover, the trusses were installed across the Rio Chama in 1924, but were used near Delta, Colorado, prior to that date. This structure is a contributing resource. (See photos 31 and 32.)

b. Oil Depot

Prior to World War II, an oil field was developed north of Chama along the Colorado-New Mexico border. Oil was piped to Chama, pumped into tank cars, and shipped by rail to a refinery in Alamosa. These shipments generated a considerable amount of rail traffic on the line until the refinery closed due to a fire in 1964. Tank cars would be spotted on either side of the depot for loading. What remains today of the oil depot is a steel frame structure with a wood plank walk and handrails above the oil supply piping and an operator’s shack. This structure was restored in 1993, is in fair condition, and is a contributing resource.

c. Water Tank

The water tank at Chama is unusual in that it has two spouts to service locomotives on two tracks simultaneously. It is pump-fed from the Rio Chama River. The tank is representative of a standard D&RG design and holds 50,000 gallons in a wood structure on concrete foundations with a wood shingle roof. This structure was restored in 1994-1995, is in good condition, and is a contributing resource.

d. Log Bunk House

Located north of the warehouse, the log bunk house is representative of a standard D&RG design, two of which still exist in the district. There is also a coal shed and privy adjacent to this building. This building was stabilized in 1999 and is in good condition. This building is a contributing resource.
e. **Car Body Bunk House**

Adjacent to the log bunk house is a boxcar body without trucks, resting on the ground. As boxcars aged and became unusable on the railroad, they were often recycled as line side structures. In this case, the body was used as a bunk house. Like the railroad cars, this building is of wood construction, but with rolled asphalt roofing. It was stabilized in 2002, is in good condition and is a contributing resource.

f. **Coaling Tipple**

The Chama coaling tipple is the sole survivor of three nearly identical structures constructed in 1924 on the D&RG system (others were constructed at Gunnison and Durango). It replaced a predecessor structure and automated the process of moving coal from waiting railcars to the storage bin and locomotive tenders (Osterwald). Located south of the water tank, the tower consists of a concrete bin below a raised track at the rear of the building, an elevator consisting of two buckets moving up and down the rear of the tower, and an elevated bunker above a gabled shed enclosing the elevator machinery. Carloads of coal are dumped into the concrete bin where they are fed to alternate buckets that raise the coal to a point at the top of the elevator, where the buckets automatically tip, dumping the coal into the elevated bunker. The elevated bunker stores the coal for locomotives. Engine crews dispense the coal through a single door and chute into the waiting locomotive tenders. The elevated bunker is constructed of large timbers and wood sheathing. The top of the elevator is protected by a small, wood sheathed gable-form shed, and the machinery house is a wood-frame enclosure. Machinery within the shed was manufactured by Fairbanks-Morse. The structure is founded on wood piles and mudsills, and appears to be leaning with age. The elevator machinery was restored by the Friends. It is operational, and it is demonstrated on occasion. The coaling tipple is the subject of ongoing restoration and study by the Friends. It is in fair condition and is a contributing resource. The remains of the concrete foundation for the predecessor coal trestle are visible south of the sand storage bunker. (Based on a comparison with photos 38 and 39, the relative positions of resources F, H and I on the Chama North site map above appear to be off by about 100 feet.)

g. **Locomotive Ash Pit**

East of the elevated coal loading track, the track leading to the roundhouse crosses a depressed concrete pit on steel beams and columns. Locomotive crews use this area to dump hot ashes from the locomotive’s fireboxes and store them until cool, whereupon they are moved to an adjacent rail car for disposal. This structure is in good condition and is a contributing resource.
h. Sand House and Storage Bunker

South of the coal tipple is the sand house, used to store, dry and dispense sand to locomotives that use the sand for traction on slippery rail. The sand house is a wood-frame shed on earth foundations, built with a gable roof. Inside is a large stove with a raised sieve used to filter and dry wet sand (wet sand is subject to clumping and will clog the pipes on locomotives that dispense the sand at the rail, in front of the drive wheels). South of the sand house is a storage bunker constructed of wood posts with horizontal used cross ties set behind and used to store the wet sand waiting to be dried. In front of the sand house is a vertical frame structure that supports an elevated holding tank. Once the sand is dried inside, it is placed in a hopper where compressed air (tapped from the locomotive) blows the sand through a pipe to the elevated holding tank. Sand then flows from the hopper, via gravity, into the sand dome atop the locomotive boiler. The sand house, the bunker and its machinery were restored by the Friends in 1997 and are in good condition. This complex is a single contributing resource.

i. Warehouse

At one point three warehouses were located in Chama. The surviving building is of timber-frame construction with corrugated metal siding and roof. This building was used to store wool, an important local agricultural product, prior to shipment. A raised wood platform on trackside facilitates moving products from building to railcar and vice versa. The platform and warehouse floor were renovated in 1998. This building is in good condition and is a contributing resource.

j. Warehouse Site

A second warehouse once stood between the existing warehouse and the depot. Judging from historic photos, it was similar in size and of identical construction to the surviving building. It was demolished in 1971. This site is a contributing resource.

k. Sheep Dip Pens

North and east of the roundhouse is the site of a large structure that covered sheep dip pens. Prior to loading sheep onto stock cars, the animals were ‘bathed’ in a solution that removed insects they might have collected at pasture. This large structure was constructed of wood with a wood shingle roof. Photos document a number of outside corrals adjacent to the covered portion of the facility. The pens were removed prior to the 1940s. This site is a contributing resource.
I. **Roundhouse**

The dominant building in the middle of the Chama yard is the roundhouse, used to maintain and store locomotives. A seven-stall brick building replaced an earlier wood building that burned in 1899 (Osterwald). Originally a turntable was used to access the radiating tracks. The turntable was removed with the delivery of larger locomotives, and changing operation and maintenance practices. With the removal of the turntable in 1946, all but the western-most two stalls were demolished. The building has brick exterior walls on a concrete foundation with a post-and-beam frame at the interior supporting a flat roof and has a dirt floor. South of the western-most stall, there is a boiler room containing two boilers to power machinery used to maintain the locomotives in an adjacent machine shop. The boilers themselves were recycled from outdated locomotives.

South and east of the remaining roundhouse stall is the new engine house addition, constructed in 1977 (Wilson and Glover). This concrete block addition with a precast
concrete roof contains two track bays for locomotive maintenance. It is connected internally to the historic roundhouse and machine shop. The roundhouse is in good condition and is a contributing resource.

m. Oil House

South of the roundhouse is a brick building used to store locomotive oil and lubricants. A corner room of the building also contains offices used by the staff responsible for locomotive maintenance. The building has a concrete foundation, masonry walls and a concrete roof (Wilson and Glover). The building dates from 1903, is in good condition, and is a contributing resource.

n. Night Watchman’s Dwelling

Southeast of the oil house is another recycled car body that served as the residence for the hostler responsible for monitoring locomotive fires through the night. The building is a former refrigerator car. It is of wood-frame construction with roll asphalt roofing. This building has been restored by the Friends and is in good condition. It is a contributing resource.

o. Depot

The depot at Chama is the second such building at this location, replacing an earlier building that was consumed in the 1899 fire that also destroyed the original wood roundhouse (Osterwald). The building is of wood-frame construction with board and batten siding, double-hung windows, large eaves and a composition shingle roof. Typical of railroad depots, there is a waiting room and ticket window on one end, a telegraph operator’s bay on the track side, rooms for the agent’s residence, and a large room with an elevated floor for storage of freight and express items. A raised loading dock, restored in 2003, wraps the south end of the building to facilitate moving large items directly from rail cars into the freight room. Portions of the building have been adapted to offices as this building serves as the headquarters of the railroad. The waiting room appears very much as it did during D&RG operations. This building’s foundation was stabilized in 1999 by the Railroad Commission. It is in good condition and is a contributing resource. (See photos 33 and 37.)

p. Public Toilets

In response to increasing ridership and the need for added amenities, public toilets were constructed south of the depot in 1999. This building features toilet facilities for men and women, along with a drinking fountain, and is similar in appearance to a small depot or outbuilding. It has a concrete foundation, wood-frame walls and an asphalt shingle roof. This building is in good condition and is a noncontributing resource.
q. **Track Scale**

Some forms of freight—particularly livestock—required accurate weighing for shipment (the rancher paid for the weight moved, not the carload). The track scale is a common railroad feature very much like the scale one might see at a doctor’s office. A track switch on each end routes rail cars onto the “live” rails, the rails that cross the scale mechanism (locomotives are never allowed on the “live” rails as they are too heavy for the scale mechanism). The scale itself is located inside a concrete pit, with a small wood frame shed off to the side to house the instrument. A window allows the operator to see what is being weighed. This scale was first installed in Aspen, Colorado, in 1889 and relocated to Chama in 1929 (Osterwald). This structure is in good condition and is a contributing resource.

r. **Outbuildings**

Four small support buildings are scattered throughout the Chama yards. These range from small sheet metal sheds used to protect fire hoses to larger buildings for speeder storage. The largest is a wood-frame building constructed by the Friends in 2002 to replicate a speeder shed located near the water tank and removed near the end of D&RG operations. This building is noncontributing. The other three buildings are contributing resources. All are in good condition.

s. **Livestock Loading Pens**

Livestock pens were located in prominent towns along the narrow gauge—as at Chama—and points near summer pasture lands. These pens feature a number of corrals connected by gates to a loading chute or chutes. The fences are typically constructed of wood rails and posts, both being variously peeled and unpeeled logs, hewn and sawn planks. The loading pens located at the south end of the Chama yard feature four loading chutes, with the ability to load single-deck cattle cars or double-deck sheep and pig cars. There is also a scale house. The four chutes and seven western pens and associated alleyways were restored between 1993 and 2002. This structure is in fair condition and is a contributing resource.
The following is a summary of fixed resources in the district by location:

<table>
<thead>
<tr>
<th>Location</th>
<th>Buildings</th>
<th>Structures</th>
<th>Sites</th>
<th>Objects</th>
<th>Buildings</th>
<th>Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Antonito, Colorado</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2. Hangman’s Trestle, CO</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3. Lava, New Mexico</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4. Big Horn Section House, CO</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5. Big Horn, NM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6. Sublette, NM</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7. Toltec, NM</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8. Tunnel No. 1, NM</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9. Toltec Section House, CO</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10. Phantom Curve, CO</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11. Tunnel No. 2, NM</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12. Osier, CO</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13. Cascade Creek, CO</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14. Los Pinos, CO</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15. Apache Canyon, CO</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16. Cumbres, CO</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17. Coxo, CO</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18. Cresco, CO</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19. Lobato, NM</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20. Chama, NM</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>28</td>
<td>28</td>
<td>14</td>
<td>1</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

E. **MOBILE EQUIPMENT**

Movable equipment includes the locomotives and rolling stock (boxcars, gondolas and other rail cars) that compose the trains that were used to move material, goods and passengers across the line. Rolling stock includes revenue equipment—those cars carrying paying goods; and non-revenue equipment—the cabooses and maintenance equipment. The vast majority of the equipment used is “native to the line,” that is, not used on another railroad.

1. **Locomotives**

<table>
<thead>
<tr>
<th>Locomotives</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. K-27</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. K-36</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>c. K-37</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>d. Diesel 19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e. Mechanical Diesel</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>
a. **K-27 class**

Constructed in Philadelphia by Baldwin Locomotive Works in 1903, locomotive 463 (serial number 21788) is both the oldest and smallest locomotive in the district as of this writing. This class of locomotive originally consisted of 15 locomotives, two of which remain today—No. 463 and No. 464 (locomotive No. 464 is preserved in Michigan). These locomotives measure 61-feet long over the face of the couplers and weigh 223,550 pounds in operating condition. K-27 locomotives were unloaded at Salida and initially used in Marshall Pass service. Over time, the locomotives roamed the entire narrow gauge system, with No. 463 being used on Marshall Pass, Cumbres Pass, the Silverton Branch, the Farmington Branch and even the Rio Grande Southern (Williams and O’Berry). Locomotive No. 463 is individually listed on the National Register and is a contributing resource. (See photo 74.)

b. **K-36 class**

Constructed by the Baldwin Locomotive Works in 1925, the K-36 class of 10 locomotives represents the pinnacle of steam power on the D&RG narrow gauge. These nicely-proportioned and well-designed locomotives were, and are the favorites of train crews and highly regarded for their performance. These locomotives measure 68-feet long over the face of the couplers and weigh 286,600 pounds in operating condition. Nine of the ten locomotives still exist today and five survive in the district: No. 483 (stored unserviceable, serial number 58584), No. 484 (SN 58585), No. 487 (SN 58588), No. 488 (SN 58589) and No. 489 (SN 58590). These locomotives were initially assigned to Marshall Pass and Monarch trains based in Salida, and later migrated to Cumbres Pass service once the K-37 locomotives were constructed (Williams and Grandt Vol. XI). All K-36 locomotives are contributing resources. (See photos 72 and 73.)

c. **K-37 class**

The ten K-37 class locomotives demonstrate the frugal response of the D&RG to a narrow gauge locomotive shortage of the late 1920s. The onset of the Great Depression somewhat reduced traffic levels and a growing fleet of smaller, older and increasingly worn-out locomotives resulted in pairing recycled standard gauge boilers dating from 1903 with new K-36 running gear ordered from Baldwin Locomotive Works in 1928. The components were assembled at the D&RG’s Burnham Shops in Denver and were initially based at Salida for use in powering Marshall Pass and Monarch trains. When those lines were abandoned in the 1950s, the locomotives moved to Cumbres Pass service. These locomotives measure 65-feet long over the face of the couplers and weigh 307,250 pounds in operating condition. Of the ten original locomotives, nine exist today and four survive in the district: No. 492 (stored unserviceable, ex D&RG 1021, serial number 20749), No. 494 (on display, ex D&RG 1020, SN 20748), No. 495 (on display, ex D&RG 1004, SN 20522), and No. 497 (operable, ex D&RG 1003, SN 20521) (Williams and Grandt Vol. XI). All K-37 locomotives are contributing resources.
d. Diesels

The states own two non-steam locomotives. General Electric built Locomotive No. 19 in 1943 for the Oahu Railway & Land Company in Hawaii. No. 19 has a B+B wheel arrangement, weighs 47 tons, and has a tractive effort of 22,000 pounds. A previous operator purchased the locomotive from the OR&L in 1972. No. 19 is a noncontributing resource.

In 2005, the Friends purchased a mechanical diesel for shunting cars and locomotives during winter months. It is of unknown manufacture and is a noncontributing resource.

2. Revenue-Freight (listed in equipment roster number sequence)

<table>
<thead>
<tr>
<th>Revenue-Freight</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Refrigerators</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>b. Drop-bottom Gondolas</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>c. Flatcars</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>d. High-side Gondolas</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>e. Boxcars</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>f. Stock Cars</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>g. Tank Cars</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>h. Pipe Gondolas</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>132</td>
<td>0</td>
</tr>
</tbody>
</table>

a. Refrigerators

Refrigerator car No. 55 is the sole example in the district of 50 refrigerator cars constructed in 1908 (Sloan). These cars—known as short refrigerator cars—are of 40,000-pound capacity and 30-feet long. They are constructed of wood frames held in tension by steel truss rods spanning two queen posts on needle beams. The car sides conceal wood trusses spanning between the body bolsters. Concealed space between the interior and exterior sheathing is filled with sawdust for insulation. Ice bunkers are located on the ends of the cars. Ice was loaded via hatches on the roof and rested on grilles over metal pans that collected melted water. Cars in this series were rebuilt in 1926 in Alamosa, Colorado. These refrigerator cars were used over the entire narrow gauge system, including the Rio Grande Southern and the three railroads serving Silverton. Refrigerator cars transported perishable items including milk, meats, fruits and vegetables to towns along the line, along with other locally-grown products being taken to market. When the Friends acquired this car for the railroad, it had no trucks and was in poor condition. The Friends restored the structure, trucks and braking system. It is in good condition and is a contributing resource. (See photo 56.)

The D&RG ordered twenty 40-foot long refrigerator cars in 1924 and 1926 (Sloan). These cars, of 50,000-pound capacity, were constructed specifically to better correspond with the
size and volume of contemporary standard gauge cars. They are constructed much like the shorter cars and were also used over the entire narrow gauge system. Four cars survive in the district, numbers 157, 163, 166 and 169. Cars No. 157 and No. 163 are in good condition; car No. 166 is in fair condition; and car No. 169 is in poor condition. These cars are contributing resources. (See photo 52.)

b. Drop-bottom Gondolas

The 700- and 800-series gondolas were constructed in 1904 by the National Car Company (later American Car and Foundry) in St. Louis, Missouri (Sloan). These unusual cars—31-feet long and of 50,000-pound capacity—were designed to transport coal, coke and ballast. They are unique among gondolas on the D&RG in having composite construction, which features wood beams that span longitudinally between the trucks and cross members of steel. The cars’ floors have doors—six to a side—on either side of the center of the car. The doors are hinged along the center beam and are held in place by a chain-and-ratchet arrangement and take advantage of gravity to dump the load. The initial ratchet arrangement was not successful, and the cars were reconstructed at least once to their current configuration. In later years, the cars transported coal, cinders and ballast across the system. Seventeen cars survive in the district: Numbers 700, 724, 727, 728, 731, 756, 769, 774, 783, 787, 790, 791, 798, 801, 811, 848 and 859. Cars Numbers 727, 791, 811 and 859 are in good condition; cars 728, 731, 756, 769, 774, 783, 787, 798, 801, 811, 848 and 859 are in good condition; cars 728, 731, 756, 769, 774, 783, 787, 798 and 801 are in fair condition; cars 700, 724, 790 and 848 are in poor condition. All these cars are contributing resources. (See photo 48.)

c. Flatcars

Flatcars are among the most abused of rolling stock due to the lack of a superstructure above the frame to help distribute the loads induced on the car during transit. Consequently, these cars have the shortest lifespan of most cars on the narrow gauge. Also, the surviving cars are a varied bunch, many of which were modified to this car type.

With the discovery of abundant gas fields in Farmington, New Mexico, during the 1950s, the D&RG transported pipe between Alamosa and Farmington. Pipe lengths were frequently longer than the existing gondolas, so the car ends were removed and idler cars were used between the modified gondolas. The railroad used Idler flatcars between Farmington and Alamosa and they rarely if ever carried anything themselves—they just served as spacers between open-ended gondolas carrying long lengths of pipe. These idler cars were modified first from high-side gondolas and later stock cars and some boxcars (Sloan). They were often reinforced with lengths of rail above or below the side sills to compensate for the loss of the superstructure. All of these cars had wood frames with steel truss rods. In spite of the reinforcement, these cars often split in two under normal service. Ten of these cars survive in the district: Nos. 1001, 1033, 1515, and 1567 (former gondolas); 6708, 6746, and 6755 (former stock or boxcars); and 9533, 9557 and 9569 (former gondolas). Cars No. 6708 and No. 6755 are in good condition; No. 6714 and No. 9557 are in fair condition; and Nos. 1001,
1033, 1515, 1567, 9533 and 9569 are in poor condition. All these cars are contributing resources. (See photo 48.)

In 1918, the D&RG ordered 20 flatcars of composite construction. These cars have a composite frame of steel and wood with truss rods spanning two queen posts on needle beams. The cars have wood decks. These flat cars were rebuilt in 1937 with standard gauge components (Sloan). These cars were used across the entire narrow gauge system and transported machinery and freight that would not fit inside a boxcar. Three cars survive in the district: Nos. 6200, 6205, and 6214. Cars 6200 and 6214 are in good condition and the third car is in poor condition. All these cars are contributing resources.

The D&RG constructed the last new wood flatcars in 1926. These cars have a composite frame of steel and wood with truss rods spanning two queen posts on needle beams. The cars have wood decks and were reinforced using surplus rail in 1937 (Sloan). One car, No. 6314, survives in the district. This car is in good condition and is a contributing resource. (See photo 57.)

Prior to World War II, the lack of flat cars impacted D&RG operations, and the railroad’s manager commissioned new all-steel flatcars in 1939 in the 6500-series. These 80,000-pound capacity cars were modified from standard gauge gondolas constructed in 1907 (Sloan). These cars had wood decks and were used to transport machinery and large freight goods including automobiles. They were used across the entire narrow gauge system. Fourteen cars came to the C&TS upon its formation: however all have been used as frames for new passenger cars and are described elsewhere. Two other cars from the series were purchased from the Durango and Silverton Narrow Gauge Railroad in 2003–Nos. 6509 and 6544. These last two cars are in fair condition and are contributing resources.

The oil and gas pipe shipped to Farmington beginning in the 1950s required more flatcars than were on hand. The D&RG modified 62000-series standard gauge steel boxcars dating from 1909 to 6600-series narrow gauge flat cars in 1955. These were all-steel cars 37’-4” long (Sloan). Twenty-four cars were modified in this manner and three survive in the district: Nos. 6601, 6613 and 6618. No. 6618 is in poor condition. These cars are contributing resources.

Similarly, 370000-series standard gauge stock cars were modified into 79 flatcars also in the 6600-series beginning in 1956. The newer cars are longer, measuring 37’-9” (Sloan). Three of these cars survive in the district: Nos. 6627, 6636 and 6649. All three cars are in good condition and are contributing resources. (See photo 55.)

d. High-side Gondolas

The American Car and Foundry in St. Louis fabricated the 1000-series high-side gondolas in 1902 (Sloan). These cars—30-feet long and of 50,000-pound capacity—are constructed of
e. **Boxcars**

The American Car and Foundry in St. Louis built the 3000-series boxcars in 1904 (Sloan). These cars—each 30-feet long and of 50,000-pound capacity—are constructed of wood frames held in tension by steel truss rods spanning two queen posts on needle beams. The car sides conceal wood trusses spanning between the body bolsters. These boxcars were used over the entire narrow gauge system, including the Rio Grande Southern and railroads serving Silverton. The D&RG rebuilt all of the boxcars beginning in 1926 in Alamosa due to a loophole in the tax law favoring used equipment (Sloan). This was well-documented in contemporary publications and consisted of stripping each car of its metal parts and replacing all wood parts. As re-built, the cars served through abandonment. Rebuilt cars featured several varieties of wood and metal roofing, at least two variants of side doors, and may- or may not have included end doors. Boxcars were typically used for dry commodities including, high-grade ore, bullion, beans, sand, “drilling mud” and less-than-car-load-lot (LCL) freight. Eighteen cars survive in the district: Nos. 3014, 3016, 3073, 3090, 3125, 3231, 3254, 3331, 3422, 3484, 3524, 3570, 3585, 3592 and 3669, plus three additional cars. All these cars are in good condition and are contributing resources.

Another 22 cars were modified for passenger service in 1971-73 by removing the siding from the top half of the car, providing operable windows made of Plexiglas and installing seats and end doors. Nine of them have been returned to the original configuration by the Friends. The 13 remaining in passenger car configuration are Nos. 205/3475 (new number/original number), 206/3278, 207/3414, 208/3064, 210/3156, 211/3469, 212/3316, 213/3476, 214/3161, 248/3071, 249/3244, 250/3527 and 251/3405. These cars are in poor condition but retain sufficient integrity to convey their historic design and use to be contributing resources.

The nine boxcars modified for passenger service in 1971-73 which have been returned to the original configuration are Nos. 3537, 3339, 3533, 3591, 3605, 3643, 3686, 3719 and 3742. These cars are all in good condition and are contributing resources. (See photo 54.)
Stock Cars

The American Car and Foundry built the 5000-series stock cars in 1904 (Sloan). These cars—each 30-feet long and of 50,000-pound capacity—are constructed of wood frames held in tension by steel truss rods spanning two queen posts on needle beams. The car sides conceal wood trusses spanning between the body bolsters. Stock cars are essentially boxcars with exposed structural framing. These stock cars were used over the entire narrow gauge system, including the Rio Grande Southern. Beginning in 1926 these cars were rebuilt similar to the boxcars. Cars with no intermediate deck were used for cattle and horses, cars with an intermediate floor were used for sheep and pigs, and are known as “double-deck” cars. Five cattle cars, Nos. 5510, 5691, 5706, 5747 and one additional car, and six sheep cars, Nos. 5549, 5553, 5600, 5633, 5674 and 5841, survive in the district. All cars are in good condition except for 5747 which is in fair condition and 5510 which is in poor condition. All these cars are contributing resources. (See photo 53.)

g. Tank Cars

Narrow gauge tank cars were owned by several leasing companies, not the railroads. Those surviving examples of tank cars in the district were all owned by the Union Tank Car Company (known by the report mark abbreviation UTLX). These are all examples of 29-foot long/60,000-pound capacity tank cars which were rebuilt from older standard gauge cars constructed in the early twentieth century. Two types of tank cars survive—narrow framed and frameless—and all were used to haul crude oil.

Narrow framed tank cars were modified for narrow gauge service between 1924 and 1930 (Sloan). These are of all-steel construction and consist of a tank vessel on a frame spanning between bolsters. It is unknown how many of these cars were in service over the years. They were used to transport petroleum products initially from Farmington, New Mexico, to Montrose, Colorado, via the Rio Grande Southern Railroad, and later via Cumbres, Poncha and Marshall passes between the same points. When oil fields were developed in the vicinity of Chama in the late 1930s, these cars were used between Chama and Alamosa. After this service ceased in the mid-1960s, many tank cars were sold and moved to the White Pass & Yukon Railroad in Alaska. The Friends located six cars there and, with financial support from Union Tank Car Company, returned them to the C&TS in 1992. These include car Nos. 12739, 12757, 12918, 12962, 13084 and 13168. All have been restored by the Friends, are in good condition, and are contributing resources. (See photo 51.)

Frameless cars, also known as a Van Dyke tank car, use the tube of the tank to span between the truck bolsters. The lower portion of the ends of the cars are reinforced for couplers (Sloan). Twenty-five cars were modified for service on the D&RG. These were notable, as many were painted with a distinctive “GRAMPS” logo. Gramps was the nickname for Lafayette Hughes, a Chama resident who owned an oil field northwest of Chama. Multiple sources indicate that Hughes had “GRAMPS” painted on the cars so his
grandchildren would know which car carried his oil. The oil was piped to Chama for loading on the tank cars for shipment to the refinery in Alamosa. This traffic sustained the railroad through the post-war years until abandonment. Two cars were donated to the Friends from a La Jara businessman. Their numbers are not known and they lack hardware and trucks. They are in poor condition. These cars are considered contributing resources due to their extreme rarity and close association to the district.

h. **Pipe Gondolas**

When abundant gas fields were discovered in Farmington in the 1950s and pipe needed to be transported between Alamosa and Farmington, the D&RG modified high-side gondolas for this service (Sloan). Pipe lengths were frequently longer than the gondolas, so the ends were removed and idler cars were used between the modified gondolas. As with the idler cars, these cars frequently succumbed to the rigors of this service. Pipe gondolas carried various sizes and lengths of drilling and oil field pipe. Seven of these cars survive in the district: Nos. 1145, 1246, 1557, 1648, 1839, 9213, and 9558 (modified 1000- and 9000-series gondolas). Cars No. 1557 and No. 1648 are in good condition; No. 1154 and No. 1246 are in fair condition; and cars No. 1839, 9213 and 9558 are in poor condition. All these cars are contributing resources. (See photos 49 and 50.)

When more sturdy cars were needed for pipe service, the D&RG modified older steel frame standard gauge cars for this service. In 1953, the railroad modified 20 outside Z-braced boxcars originally built in 1916 at the Burnham Shops in Denver. Modifications consisted of cutting the sides down to approximately 3'-3" above the floor and mounting the cars on narrow gauge trucks. Some of these cars were subsequently modified in 1963 for Silverton passenger service (Sloan). Two cars survive in the district, No. 9613 and No. 9615. These cars are in good condition and are contributing resources.

3. **Revenue-Passenger**

<table>
<thead>
<tr>
<th>Revenue-Passenger</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 1982 Conversion Cars</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>b. 1987 Conversion Cars</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>c. 1993 & 97 Conversion Cars</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0</td>
<td>19</td>
</tr>
</tbody>
</table>

When the Denver & Rio Grande sold its Antonito-Chama line to the states of Colorado and New Mexico in 1970, all available passenger cars were being used in service on the Silverton line. In fact, many passenger cars assigned to non-revenue service received newly-fabricated trucks so their passenger trucks could be used under new passenger cars constructed at D&RG’s Burnham Shops in Denver during the 1960s. Surviving passenger equipment includes ex-mail and baggage cars Nos. 053, X54 and X65, former chair car 0452, former tourist sleeper No. 0252 and ex-coach No. 292. These are all described under non-revenue equipment.
Lacking passenger cars, the C&TSR initially converted boxcars for passenger use by removing siding from the top half of the cars, then installing plastic window material and seating. The result looked more like a freight train from a distance—popular with railfans—but they had limited head clearance inside. The 22 so converted cars are listed under ‘boxcars’ above.

a. **1982 Conversion Cars**

In 1982-3, seven 6500-series steel flatcars were modified to passenger cars by constructing car bodies with paired windows, roofs, and end platforms similar in appearance to the earliest D&RG historic coaches. These are 6521/500/Alamosa (old number/new number/name); 6510/501/Antonito; 6542/502/Monte Vista; 6516/503/Del Norte; 6540/504/San Luis; 6537/505/La Jara and 6533/506/Conejos (Danneman). These cars are in good condition but are noncontributing resources due to their conversion after the period of significance.

b. **1987 Conversion Cars**

In 1987, construction of seven more cars commenced using center sills from 6500-series steel flatcars. The design was refined, and the newer cars feature larger windows and a clerestory roof similar to the later period historic passenger cars used by the D&RG. These are 6500/510/Tres Piedra (old number/new number/name); 6501/511/Santa Fe; 6512/512/Chama; 6518/513/Taos; 6538/514/Ojo Caliente; 6541/515/Espanola and 6543/516/Dulce (Danneman). These cars are in good condition but are noncontributing resources due to their conversion after the period of significance.

c. **1993 and 1997 Conversion Cars**

In 1993 and 1997, five more passenger cars were constructed using standard-gauge flat car with steel underframes. These cars are AX4629/517/Big Horn (old number/new number/name); AX4609/520/Cumbres; unknown number/521/Osier; AX4606/522/Sublette and unknown number/523/Los Pinos (Danneman). These cars are in good condition but are noncontributing resources due to their conversion after the period of significance. (See photo 46.)

4. **Non-revenue: Cabooses**

<table>
<thead>
<tr>
<th>Non-revenue: Cabooses</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Caboose—Short</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>b. Caboose—Long</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c. Caboose—Conversion</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
a. Caboose—Short

Caboose No. 0579 is an example of eleven 17'-0" long (short) cabooses built by the D&RG in 1886 (Sloan). These cabooses are constructed similar to a boxcar with a wood frame held in tension by steel truss rods spanning two queen posts on needle beams. The car sides conceal wood trusses spanning between the body bolsters. These cars ride on two trucks, similar to those used on freight cars but with leaf springs, instead of coil springs, for a smoother ride. The short cabooses had less space than their longer counterparts, with bunks for three, along with a desk for the conductor, a stove, a sink and a small folding table for dining, paperwork and cards. There were also storage lockers for train crew supplies. A cupola extends above the roof at the center of the car with seats for four but room only for two crew members whose job was to observe the train for “hot boxes” (when axle journal bearings were not wearing properly and running “hot” they set aflame the oil-soaked cotton waste lubricating the wheel bearings). Although all short cabooses have similar construction, each vehicle is an individual. The cars vary according to their assignments and the individuals assigned to them. After World War I with the construction of more- and larger cabooses, short cabooses were used primarily for day-long runs on the branch lines. Caboose No. 0579 appears to have been assigned to Montrose for use on the Ouray branch during the 1930s and ‘40s, and later was moved to Durango (Grandt). This caboose was used for the movie, “Denver & Rio Grande” filmed north of Durango in 1951. It was sold shortly thereafter and subsequently moved to Antonito. The Friends restored caboose No. 0579 to operating condition. This caboose is in good condition and is a contributing resource. (See photo 6.)

b. Caboose—Long

Caboose No. 0503 is an example of a D&RG long caboose. Several varieties of these cabooses exist, but all are 25'-26' in length with a cupola offset to the end of the car. These cabooses are constructed similar to a boxcar with a wood frame held in tension by steel truss rods, each spanning two queen posts on needle beams. The car sides conceal wood trusses spanning between the body bolsters. These cars ride on two trucks, similar to those used on freight cars but with leaf springs for a smoother ride. The long cabooses have more space than their shorter counterparts, with bunks for five, along with a desk for the conductor, a stove, a sink, and a small folding table for dining, paperwork, and cards. There were also storage lockers for train crew supplies. Caboose No. 0503 was constructed by the D&RG in 1923 from parts of a previous, shorter caboose of the same number that was built by the D&RG in 1886. Longer cabooses appear to have been assigned to Salida and Alamosa for service on longer-distance trains (Sloan). No. 0503 was assigned to Alamosa after World War II and was sold to the C&TS in 1970 (Grandt). This caboose is in fair condition and is a contributing resource.
c. **Caboose—Conversion**

Two cabooses in the district are reconstructions of long-caboose design. Caboose No. 0306 was built from boxcar No. 3060 in 1982. Caboose No. 05635 was similarly constructed from stock car No. 5635 in 1976 (Osterwald) and further modified by the Friends in 2004-06. These cabooses are constructed similar to a boxcar with a wood frame held in tension by steel truss rods spanning two queen posts on needle beams. The car sides conceal wood trusses spanning between the body bolsters. There is a precedent for this modification, as the D&RG converted 2-3 boxcars to cabooses, several of which survive. Both C&TS cars are used in excursion service and are noncontributing resources. (See photos 58 and 59.)

5. **Non-revenue: Maintenance-of-Way (MOW) Equipment**

The Cumbres & Toltec Scenic Railroad has an unparalleled collection of track-mounted maintenance-of-way equipment typical of any early-twentieth-century railroad. MOW equipment is used to maintain the track and right-of-way year-round and the machinery is also used to clear the line of snow in the winter. The D&RG maintained an extensive fleet of narrow gauge MOW equipment until abandonment in 1968, and much of this was sold to the states of Colorado and New Mexico in 1970. This equipment was numbered in two sequences. Cars built for this service were given letter numbers with the letter prefix ‘O.’ For example rotary snow plow OM, is pronounced "ō-em." Cars modified from box cars or passenger cars for MOW service continued with their original number and the numeral prefix ‘0’ or zero. The boom car for pile driver OB is 06008, for example. Letter prefix cars are described first, along with auxiliary equipment, with number prefix cars following.

<table>
<thead>
<tr>
<th>Non-revenue: MOW</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Pile Driver Car and Boom</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>b. Flangers</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>c. Rotary Snowplows and Tenders</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>d. Derrick Car and Support Train</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>e. Ditcher-Spreader</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>f. Modified Freight Cars</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>g. Modified Passenger Cars</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>h. Hoppers</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>i. Motor Cars</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>8</td>
</tr>
</tbody>
</table>
a. Pile Driver Car

The D&RG constructed Pile Driver OB in 1891 by the D&RG with machinery from Kendall and Roberts Co. (Day). This car consists of a long frame with a machinery enclosure and folding boom, all of which rotates 180° on a large gear which is mounted on a 30-foot long flatcar. Although D&RG records list the flatcar frame being of composite construction, it appears similar to other flatcars constructed of wood frames held in tension by steel truss rods spanning two queen posts on needle beams. The hoist machinery uses steam from the locomotive boiler to operate the pile. The operating weight of OB is listed as 68,400 pounds. The pile driver was in a wreck in 1920 and was rebuilt soon thereafter. Due to the length of the folded boom, OB required an idler (boom) flat in order to be moved across the railroad. Flatcar No. 06008, dating from 1887 was assigned to OB in 1923. OB and 06008 were assigned to Alamosa. OB is currently undergoing restoration and 06008 has been restored and is in good condition. Both cars are contributing resources.

b. Flanger

Flangers are shorter cars, 19-feet long with snowplows mounted beneath their steel frames that spread the snow away from the track. These cars also had two “knives” that scraped the inside face of the rail, or flange, hence the name. The blades and knives are raised and lowered via air pressure from the locomotive—a target atop the flanger similar to that on a switch stand indicates the blade location, up or down. Flangers are operated immediately behind a locomotive, either in a special train with the flanger alone, as part of a rotary snow plow train, or in a normal train, directly behind the locomotive. The unique design was patented by the D&RG in 1885 (Day). Flangers initially had a wood frame similar to other freight cars, with truss rods spanning one needle beam; subsequently they were rebuilt with steel frames (Sloan). All available voids in the deck frame are filled with scrap metal to increase the weight of the car. Operating weights of C&TS flangers vary from 32,200 pounds to 33,900 pounds. Each flanger is unique, and the blade shapes on each flanger differ from all of the others. Of the eleven flangers listed on rosters, eight survive and three exist in the district: OJ, OK and OL. The D&RG built these three flangers in 1888 at its Burnham Shops in Denver. Each was rebuilt circa 1913 in Salida, and again in 1937 or 1940 in Alamosa to the current configuration. Flangers OJ and OK were assigned to Gunnison for use on the Black Canon line, Baldwin and Crested Butte branches and transferred to Alamosa in 1956. Flanger OL was assigned to Salida for use on Marshall Pass, Poncha Pass and the Monarch branch, and was transferred to Alamosa in 1956 (Day). These cars are all in good condition and are contributing resources. (See photo 61.)

c. Rotary Snow Plows

After operating the San Juan and Marshall Pass lines for almost a decade, the D&RG determined that snow plows mounted on locomotives were not sufficient for clearing winter snows on these lines. Fortunately, a machine had been developed to aid in clearing snow—
the rotary snow plow. This machine, essentially a snow blower, was first developed by a fellow named Jull from Ontario, Canada, who later sold the idea to the Leslie brothers. The Leslies established the Leslie Brothers Manufacturing Co. to market the plow and licensed the Cooke Locomotive & Machine Works of Patterson, New Jersey (later the American Locomotive Company or ALCO) to actually construct the machines (Hereford).

The D&RG ordered Rotary No. 1 (Leslie construction number 24) in 1889. The machine was delivered to Denver in February and stationed in Alamosa for use on Cumbres soon thereafter (Day). A companion plow, Rotary No. 2 (Leslie 25) was ordered at the same time and sent to Salida for use on the Marshall Pass line (Day). Rotary snowplows move snow via a fan-like blade powered by steam. The machine is constructed on a steel underframe with a wood body surrounding the boiler. Rotary snow plows are unable to move by themselves, so photos of snow trains always show multiple locomotives pushing the plow through the snow. Rotary 1 was renumbered OM in 1907 (Rotary No. 2 became ON and was requisitioned by the Army in World War II for use in Alaska; it was scrapped in 1968) (Day). OM was rebuilt at least twice, in 1909 and 1916. After delivery of Rotary OY in 1923, OM was stationed in Chama, and it was last used by the D&RG in 1957. Although it was used west of Alamosa to Silverton, and reportedly on some standard gauge lines (on standard gauge trucks), OM rarely strayed far from Cumbres Pass. Hereford provides a detailed account of OM’s use since 1970. Rotaries were delivered without tenders for coal and water, and old locomotive tenders were drafted for this use. In 1963, the original tender was replaced with one which formerly belonged to Uintah Railway locomotive 30. OM was also assigned a modified UTLX narrow frame tank car (the dome was removed) as Water Car No. 0471 (Day). OM is on display in Chama pending body and boiler repairs. Rotary OM is in fair condition; the two tenders are in good condition, and all are contributing resources. (See photo 63.)

In 1923 the D&RG ordered its fourth and final narrow gauge rotary from American Locomotive Company’s (ALCO) Cooke works. This machine carries construction number 65053 (Day) and was designated OY by the D&RG. OY was quickly assigned to Alamosa to supplement OM in Cumbres Pass service. Shipped from the manufacturer without a tender, the D&RG modified a standard gauge tender for this use. In 1958, a UTLX narrow frame tank car was modified for use as an auxiliary water car and assigned the number 0472 (Day). OY was overhauled in 1998 by the C&TS and is operable. Rotary OY and the two tenders are in good condition and are contributing resources. (See photo 64.)

d. Derrick Car and Support Train

Derrick OP was constructed by the D&RG in 1911 using the frame of gondola No. 9562. Originally, the boom was of wood construction, and was revised to a steel boom in 1920. The boom of OP is constructed such that it can move up and down, but not side to side. An enclosure constructed similar to a small boxcar covers the two-drum hoist that raises the boom and the hook line. The hoist is powered by steam from an adjacent locomotive (Day
and Sloan). As with the pile driver, an idler car was necessary to transport OP across the railroad. Flatcar No. 06063, built in 1887 was assigned as a boom car in 1923. In addition, several support cars were also assigned to OP, and many of these survive on the C&T today. These include: No. 0452, a coach-kitchen-diner-bunk car converted from a passenger car built in 1879 by Billmeyer & Small as a chair car (Danneman); No. 06051, a rail and tie car converted from an 1887 flatcar; 06092, a wheel and tie car modified from an 1887 flatcar; No. 04426, a cable car modified from an 1895 boxcar; No. 04444, a block car converted from an 1895 boxcar; and No. 04549, a tool car modified from an 1895 boxcar. OP and its support train were based in Alamosa and were used over the entire narrow gauge system. Nos. 06063, 06051, 06092, 04426, 04444, and 04549 are in good condition; OP is in fair condition; and No. 0452 is in poor condition. Derrick OP, the boom car and six associated work cars are all contributing resources. (See photos 60, 62, 66, 67, 69 and 71.)

e. **Ditcher-Spreader**

Ditcher-Spreader OU was ordered by the D&RG in 1924 from the C. F. Jordan Co. of East Chicago, Indiana. This is the only narrow gauge version of this type of car constructed by Jordan. OU is constructed entirely of steel (unique among MOW equipment) and has a series of blades suspended along the side of the car and from arms that can be rotated away from the car and down along the road bed using compressed air supplied by the locomotive. In operation, the spreader is operated behind a locomotive with the blades extended to move snow, ballast, or earth. OU was used along the C&T to clear shrubs from the right-of-way in 2001 with great success. Originally shipped without an operator’s cabin, and with a horizontal air tank, a cabin was added in 1940 and the tank was shifted to a vertical position. The cabin was subsequently modified in 1953 (Day; Sloan). OU was based in Alamosa and used in ballast service across the entire narrow gauge system, but in snow service exclusively on Cumbres Pass. OU is in good condition and is a contributing resource. (See photo 70.)

f. **Modified Freight Cars**

With wear and tear, older cars were often shifted from revenue to non-revenue service as maintenance-of-way cars. Cars received varying degrees of modification depending upon the new service assignment. A number of these cars survive in the district. Boxcars dating to 1885 include No. 04258, a section men bunk car assigned to OY, and No. 04407, a sleeper. Both these cars are modified with added windows and doors. Boxcars dating to 1896 include No. 04904, a water service car (used by crews who maintained the water tanks and water sources along the line) and 04982, an office car. This last car was also used as a caboose on the Santa Fe branch (Sloan). W462 is a water car constructed from the tender of locomotive 462, now scrapped. Coal outfit car No. 09410 appears to be a former locomotive tender tank mounted on a high-side gondola frame. While less glamorous, each of the above pieces fulfilled needed functions on the railroad and represent the resourcefulness of the company to adapt the various car types to new uses. Cars 04258,
04407, 04904 and 04982 are in good condition; W462 and No. 09410 are in poor condition. All of these cars are contributing resources.

g. Modified Passenger Cars

Car No. 053 is a cook car that was assigned to Rotary OY. This car is a former short (38'-6" long) 1884 mail car that was formerly used on the Santa Fe branch. Enginemen outfit cars X54 and X65 were former long (46'-0") mail cars used in “San Juan Express” service between Alamosa and Durango; X54 was later assigned to Rotary OM and X65 was then assigned to Rotary OY (according to Sloan, the X-prefix indicated the car was to be attached to the end of the train). Two passenger cars survive in maintenance service: No. 0252 (ex-Pullman) and No. 292. Car No. 0252 was constructed by the Pullman Company as a 12-section tourist sleeping car in 1889 and was one of a series of four cars numbered 467-470. Three of these cars were sold to the Colorado & Northwestern Railroad in 1909 and subsequently renumbered. Western Union eventually purchased one of the cars, converted it to a coach-outfit car and used it along the Rio Grande to service its communications lines. After Western Union abandoned the car in 1933, the D&RG assumed ownership and renumbered the car No. 0252. 0252 was retired in 1953; it was acquired by the C&TS in 1994 (Danneman). Car No. 292 was built by Jackson & Sharp in 1881 as a coach and used in passenger service until 1928 when it was transferred to MOW service (Danneman). Cars No. 053 and No. 292 are in fair condition; X54, X65 and No. 0252 are in poor condition. All of these cars are contributing resources.

h. Hoppers

To aide in ballast spreading activities, the modern tourist line C&TS purchased a number of steel hopper cars built for other railroads. Prior to 1999, three former standard-gauge Butte Anaconda & Pacific hoppers Nos. 1307, 1309 and 1311 were purchased and placed on narrow gauge trucks. In 2000, five steel narrow gauge hoppers were purchased from the East Broad Top in Pennsylvania. These were formerly EBT numbers 978, 1044 and 1054 (the numbers of the last two have not been identified) and are numbered on the C&TS as EBT-1-5. All eight cars are of steel construction with doors at the bottom of the car to facilitate unloading. Cars 1307, 1309 and 1311 are in good condition; EBT 1-5 are in poor condition: all are noncontributing resources. (See photo 65.)

i. Motor Car

Motor Cars, colloquially known as speeders or “pop cars” for the “popping” sound of their reciprocal engines, were used by track maintenance or section crews to monitor the right-of-way and travel to remote work locations. These are the motorized equivalent of hand-cars. The C&TS has a particularly fine collection of various models of narrow gauge motor cars, many produced by the Fairmont Company. Nos. 04 and 013 are examples of model ST2; Nos. 101, 102 and 103 are examples of model A6; Nos. 104 and 107 are examples of model
A3; Nos. 105 and 108 are model MT 14; and No. 106 is a homemade car. In addition, five non-powered trailers provide the ability to tow additional personnel, tools and materials. Trailers are constructed of cast- and pressed steel frames and wheels with wood decks. These are Nos. 126-130 and 208 and 209. All motor cars and trailers are in good condition and are contributing resources.

6. Standard Gauge

<table>
<thead>
<tr>
<th>Standard Gauge</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Gauge Idler Car</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Standard Gauge Boxcars</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

a. Idler Car

Palmer originally conceived the Denver & Rio Grande as a narrow gauge railroad for economic reasons—he was influenced by British industrial railroads and noted the smaller equipment weighed less, required less material for track work and roadbed, and could negotiate sharper curves and steeper grades. In short it cost less to build and operate. The 3'-0" track gauge contrasts with the 4'-8½" gauge adopted as “standard gauge” in the United States in the mid-nineteenth century. All Rio Grande track was narrow gauge until the late 1880s, when their standard gauge lines began to build west into the mountains. At first a third rail was installed (both gauges sharing one common rail), and gradually as the D&RG converted to the wider gauge, the narrow gauge third rail was removed. Three-rail track extended to Antonito, and the trackage between Alamosa and Antonito was operated as dual gauge until narrow gauge service ended. Trains with both standard and narrow gauge cars were operated as one unit using idler cars with multiple couplers on each end to join the cars of different gauges. The C&Ts has one steel-framed idler car, No. 010793, constructed by the D&RG. This car is in good condition and is a contributing resource. (See photo 8.)

b. Boxcars

For the purposes of comparison, the Friends renovated two standard gauge boxcars of composite construction donated by the D&RG in the later 1980s. These are Nos. 66306 and 66977, both boxcars with a steel frame, ends and roof, and wood side sheathing. These are displayed by the Friends in Antonito with the idler car to illustrate the difference in size between standard gauge and narrow gauge rolling stock. Both cars are in good condition but are noncontributing resources due to their lack of direct association with the district during the period of significance.
The following is a summary of all the moveable equipment in the district:

<table>
<thead>
<tr>
<th>Moveable Equipment District Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structures</td>
</tr>
<tr>
<td>1. Locomotives</td>
</tr>
<tr>
<td>2. Revenue Freight</td>
</tr>
<tr>
<td>3. Revenue Passenger</td>
</tr>
<tr>
<td>4. Non-Revenue</td>
</tr>
<tr>
<td>5. Maintenance of Way</td>
</tr>
<tr>
<td>6. Standard Gauge</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

District Resource Summary

The original 1972 National Register district listing specifically called out numerous resources along the 64-mile railroad corridor. When these resources were later entered into the National Register Information System database, 13 contributing buildings, 11 contributing structures and 1 noncontributing building were recorded. Recent consultation between the National Register staff in Washington, DC, and the Office of Archaeology and Historic Preservation in Colorado yielded the following table of previously listed resources in the existing historic district:

<table>
<thead>
<tr>
<th>1972 District Resource Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Antonito</td>
</tr>
<tr>
<td>Depot (new)</td>
</tr>
<tr>
<td>Lava</td>
</tr>
<tr>
<td>Telephone shed</td>
</tr>
<tr>
<td>Water tank</td>
</tr>
<tr>
<td>Big Horn</td>
</tr>
<tr>
<td>Telephone shed</td>
</tr>
<tr>
<td>Sublette</td>
</tr>
<tr>
<td>Section houses</td>
</tr>
<tr>
<td>Handcar shed</td>
</tr>
<tr>
<td>Water tank and standpipe</td>
</tr>
<tr>
<td>Toltec</td>
</tr>
<tr>
<td>Telephone shed</td>
</tr>
<tr>
<td>Osier</td>
</tr>
<tr>
<td>Section house</td>
</tr>
<tr>
<td>Handcar shed</td>
</tr>
</tbody>
</table>
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

<table>
<thead>
<tr>
<th>Location</th>
<th>Structure/Equipment</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Pinos</td>
<td>Water tank</td>
<td>1</td>
</tr>
<tr>
<td>Cumbres</td>
<td>Section house</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Handcar shed</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Water tank</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Snowshed</td>
<td>1</td>
</tr>
<tr>
<td>Coxo</td>
<td>Telephone shed</td>
<td>1</td>
</tr>
<tr>
<td>Cresco</td>
<td>Telephone shed</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Water tank</td>
<td>1</td>
</tr>
<tr>
<td>Lobato</td>
<td>Stock loading pens</td>
<td>1</td>
</tr>
<tr>
<td>Chama</td>
<td>Water tank</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Coaling tower</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Stock loading pens</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Depot</td>
<td>1</td>
</tr>
</tbody>
</table>

Total: 13 11 1

In addition to the above resources, Denver & Rio Grande Western Railroad Engine 463 was individually listed in the National Register in 1975.
The table below summarizes all the contributing and noncontributing resources in the expanded district.

Total District Resource Summary

<table>
<thead>
<tr>
<th>Resource Types</th>
<th>Contributing</th>
<th>Noncontributing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buildings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depots & Section Houses</td>
<td>5 1</td>
<td>6 1</td>
</tr>
<tr>
<td>Sheds & Telegraphone Booths</td>
<td>8 3</td>
<td>8 4</td>
</tr>
<tr>
<td>Other Buildings</td>
<td>14 14</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>13 15</td>
<td>28 4</td>
</tr>
<tr>
<td>Structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trackage & Railbed</td>
<td>2 2</td>
<td>1 1</td>
</tr>
<tr>
<td>Bridges & Tunnels</td>
<td>8 8</td>
<td></td>
</tr>
<tr>
<td>Water Tanks & Stand Pipes</td>
<td>7 1</td>
<td>8 0</td>
</tr>
<tr>
<td>Stock Loading Pens</td>
<td>2 1</td>
<td>3 0</td>
</tr>
<tr>
<td>Misc. Fixed Structures</td>
<td>2 5</td>
<td>7 7</td>
</tr>
<tr>
<td>Steam Locomotives</td>
<td>1 9</td>
<td>10 0</td>
</tr>
<tr>
<td>Other Locomotives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling Stock & Motor Cars</td>
<td>183 32</td>
<td>183 32</td>
</tr>
<tr>
<td>Subtotal</td>
<td>12 209</td>
<td>221 42</td>
</tr>
<tr>
<td>Sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building & Natural Sites</td>
<td>15 45</td>
<td>15 45</td>
</tr>
<tr>
<td>Subtotal</td>
<td>15 45</td>
<td>15 45</td>
</tr>
<tr>
<td>Objects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garfield Monument</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>1 1</td>
<td></td>
</tr>
<tr>
<td>District Total</td>
<td>25 240</td>
<td>265 46</td>
</tr>
</tbody>
</table>
The 64-mile long Antonito, Colorado, to Chama, New Mexico, portion of the Denver & Rio Grande Railroad San Juan Extension (D&RG-SJE) was listed in the National Register on January 16, 1973, as the Cumbres and Toltec Scenic Railroad (C&TS). As with many of the early National Register listings, the exact areas and periods of significance are somewhat unclear. Though the railroad’s role in the westward expansion of the nation was briefly mentioned, the property was listed at a local level of significance. The additional documentation that follows places the San Juan Extension in a national context and demonstrates that the Antonito to Chama segment is significant at the national level under Criterion A in the area of transportation and Criterion C in the area of engineering. Though commerce was not an area of significance specifically marked on the original nomination form, this area was included in the National Register Information System database, apparently in recognition of the railroad’s key role as an agent of commercial activity along its transportation corridor.

The period of significance begins in 1880 with the completion of the rail line from Antonito to Chama and ends in 1967, the year in which the Denver & Rio Grande Railroad (D&RG) ceased operations. In July 1970, the D&RG sold the line along with its buildings, fixed structures and significant amounts of operating equipment to the states of Colorado and New Mexico. Though the period of significance extends ten years past the traditional fifty-year ending point for National Register nominations, the district need not meet the Criteria Consideration G requirements for several reasons. First, the ten-year period constitutes only a small portion of the full 127-year period of significance. Second, the 1967 closing date marks an important point in the operation and significance of the district—the end of rail operations over the route by the D&RG. The railroad continued to operate effectively as a steam locomotive-powered, narrow gauge segment of a Class-I U.S. railroad during this final ten-year interval. The railroad continued to provide important freight rail service and occasional passenger excursions for its customers during the last decade of operation. Finally, no new resources were added to the district during the period from 1957 to 1967. The D&RG’s ongoing use and continued, though limited, maintenance of the segment helped insure the high degree of physical integrity that is a critical factor in the property’s current ability to convey its national significance.

The national level of significance is best realized by comparing the Antonito to Chama segment of the D&RG-SJE to the Durango & Silverton Narrow Gauge Railroad (D&SNG), a branch line at the end of the extension. The later was formally recognized as a National Historic Landmark, and thus a
nationally-significant property, in 1961. The 45-mile long D&SNG and the 64-mile long Antonito to Chama segment were both part of the D&RG’s expansion into the San Juan Mountains and both date from the early 1880s. Each segment contains a variety of topography conveying the full spectrum of narrow gauge railroad engineering, construction and operation. Both segments served the important San Juan Mountain mining districts and the Durango smelting and supply center. While the D&SNG operated directly in this geographic region, freight and passenger traffic originating from or destined to the Durango and Silverton areas passed over the Antonito to Chama segment of the D&RG-SJE. In addition, the Antonito to Chama segment also played a major role in transporting forest products from the southern Colorado and northern New Mexico lumber industry; in hauling oil and construction materials to and from the New Mexico oil fields in Farmington and Chama; and in shipping cattle, sheep and wool from the area’s ranches to eastern Colorado processors.

Both the Antonito to Chama segment and the Durango to Silverton segment continue to operate using vintage narrow-gauge equipment, much of it dating from the 1920s. For example, the D&SNG uses three class K-28 steam locomotives and four class K-36 steam locomotives in its tourist-train operations. The C&TS uses one class K-27 locomotive, four K-36 locomotives, and one K-37 locomotive. Both railroads use a variety of newly built passenger cars or modified vintage freight cars for tourist-train operations. In addition to a number of steel-sided passenger cars built in 1963-64, the D&SNG operates eight wood passenger cars of 1880s vintage. The C&TS does not own operate any historic wood passenger cars. However, it is in the area historic freight and non-revenue rail cars that the C&TS particularly stands above similar historic districts. The railroad owns 132 contributing freight cars, consisting of refrigerator cars, gondolas, flatcars, boxcars, stock cars, tank cars and pipe cars. Many of these cars have been restored to operating condition and are used in tourist trains and for photographic train operations. The railroad also maintains and uses numerous maintenance-of-way cars, including pile driver cars, flangers, hoppers, motor cars, a derrick car and support train, and two rotary snowplows. The significant collection of historic steam locomotives and rolling stock, much of it operational, enhances the national level of significance of the Antonito to Chama segment of the D&RG-SJE, particularly during the period from the mid-1920s through 1967.

Finally, this additional documentation emphasizes the importance of the historic name of this rail segment. The Cumbres & Toltec Scenic Railroad is a magnificent preservation achievement, demonstrating a successful partnership of dedicated volunteers, private enterprise, and multi-state and multi-level governments. One day the post-1970 history and accomplishments of the Cumbres & Toltec will be recognized by further amendments to the National Register designation of this railroad. However, it is important that the original name and history of the Antonito to Chama segment of the Denver & Rio Grande’s San Juan Extension receive their proper recognition. It is the transportation and engineering accomplishments of the San Juan Extension that the Cumbres & Toltec Scenic Railroad so ably preserves and conveys to the public.

* * *
The Denver & Rio Grande Railroad’s San Juan Extension is a major technological contributor to the western expansion and economic development of the United States. From prior to the Civil War until World War II, railroads represented the fastest, most economic method to transport goods and people across the nation. Railroad routes defined growth patterns and industrial centers, anticipated highway routes and even persist today in the form of our land-based telecommunications network. The railroad was a party to many of the events that are seminal points in our nation’s history. Yet, the rising dependence on highways and airplanes has diminished the historic role of the railroad to relative obscurity. Perhaps the saddest part of all is the almost complete disappearance of the historical heritage of the railroad. In the rush toward more modern equipment and bigger, faster trains, the older equipment which had so much nostalgic appeal has been discarded, with little thought regarding its preservation and interpretation for future generations.

It is a pleasant surprise to find a railroad that is in all essential ways historic, unchanged from the way it was operated from the Depression era until the modern day. The Denver & Rio Grande’s San Juan Extension (D&RG-SJE) is just that. Although the tiny locomotives and thirty-pound rail of the 1880s are gone, little else has changed on this remarkable railroad since the 1930s. It stands alone as a complete and intact segment of mountain railroad with equipment, structures, operating practices, and even the landscape much as they were from the Depression era until operations ceased in 1968. The historical integrity is so well preserved that the only operating coaling tower in the United States used to coal the engines during the operating season still survives. There are other tourist railroads in America, but few approach the authentic adherence to a period of the early twentieth century as does the C&TS.

Joseph P. Hereford, Jr. provides one of the best and most brief descriptions of the line’s heritage in Rio Grande Narrow Gauge—The Final Years, Alamosa to Chama:

> The track between Alamosa and Chama was built in 1880 by the Denver & Rio Grande Railroad, organized a decade earlier to construct a railroad from Denver, Colorado, to El Paso, Texas. Influenced by the apparent success of narrow-gauge railroads in Great Britain, the D&RG’s promoters chose a track gauge of 36 inches, rather than the “standard” track gauge of 56-1/2 inches. Beginning at Denver in 1871, work proceeded south, reaching the vicinity of Trinidad, Colorado, five years later.

> Twenty-two miles of track built to La Veta, Colorado, in 1876 later were extended into the San Luis Valley. From a terminal at Alamosa, a line was projected south toward Santa Fe, New Mexico. The ultimate goal remained El Paso.

> As construction proceeded south from Alamosa in 1880, silver camps in southwestern Colorado beckoned. So, from Antonito, the Rio Grande sent forth two construction forces. One worked to the west, building what the railroad termed its “San Juan Extension.” Those crews crossed 10,015-foot Cumbres Pass, reaching Chama in December that year. The other force, building south toward Santa Fe, reached Espanola, New Mexico, the same month. Intended as part of a mainline to El Paso, construction toward Santa Fe halted at Espanola upon opposition from the rival
Atchison, Topeka & Santa Fe Railroad—then building its own railroad toward El Paso. Eventually, in 1892, the D&RG absorbed what had been built as an independent connection between Espanola and Santa Fe. The narrow gauge into Santa Fe, though, never amounted to more than a lightly-trafficked branch line.

The railroad over Cumbres Pass was much more significant to the Rio Grande. The 107 miles of track between Chama and Durango were completed in 1881, and, the following year, the track was extended to Silverton. For ten years, the San Juan Extension served an active silver-mining industry.

Other narrow-gauge routes were constructed as well. To the north, between Salida and Grand Junction, Colorado, a narrow-gauge mainline was completed in 1881. It crossed Marshall Pass, at an elevation of 10,860 feet. The Marshall Pass railroad was part of an east-west narrow-gauge mainline into Utah for the purpose of supplementing the local traffic with bridge traffic, freight and passengers received from a connection carrier at one end of the railroad and delivered to a destination or another carrier at the other end.

As a bridge connection, though, the Rio Grande was at a serious disadvantage. Freight received from a connecting railroad had to be transferred from standard-gauge to narrow-gauge cars before it could proceed to its destination; the arrangement was distinctly impractical for large volumes of traffic. The Rio Grande in fact admitted the impracticality of its choice of track gauges when it added a third rail to its Denver-Pueblo line in 1880. That third rail enabled the D&RG to move cars received from the Santa Fe into Denver.

Consequently, in 1890, a new mainline was completed to Salt Lake City. Built as a standard gauge, it also bypassed the steep grades and narrow canyons of the Marshall Pass railroad. The new standard-gauge mainline ran over Tennessee Pass and along the Colorado River to Grand Junction. After the project was completed, the narrow-gauge track terminated at Grand Junction. Nine years later, the railroad into the San Luis Valley also was changed to standard-gauge. South of Alamosa, a third rail was added in 1901, permitting standard-gauge trains to operate as far south as Antonito.

After completing its new standard-gauge mainline, the D&RG built a narrow-gauge track connecting Alamosa with its railroad over Marshall Pass. This connection known as the “Valley line,” afforded narrow-gauge equipment used on the latter route, direct access to the narrow-gauge lines south and west of Alamosa. On the west, an affiliated carrier, the Rio Grande Southern, was completed in 1891 between Durango and Ridgway, Colorado. Ridgway was a station on the Rio Grande’s narrow-gauge Ouray branch, which connected with the Marshall Pass line at Montrose, Colorado. The narrow-gauge track thus formed a rough oval, the “narrow-gauge circle.” Except for the Valley line, those routes passed through difficult terrain and incorporated grades as steep as four percent.
Operationally, then, the D&RG was divided into two major components, one standard gauge and the other narrow gauge. Shop facilities accessible to the company’s narrow-gauge lines were located at Salida and Alamosa. The Salida shops accommodated both standard and narrow gauge, but those at Alamosa almost exclusively handled repairs on narrow-gauge equipment.

Had traffic justified, the remaining narrow-gauge track might have been widened, too. But in 1893, the nation entered a severe recession. In response, the federal government stopped purchasing silver in unlimited quantities for monetary purposes. The bottom fell out of the silver market. Most of the metal mines served by the Rio Grande’s narrow-gauge railroad were silver mines. Though other customers, such as lumber mills and mercantile establishments, were adversely affected, they revived along with the rest of the economy in 1894. The silver mining industry, though, was permanently damaged. Mines, mills, and smelters throughout the West closed, never to reopen. At a stroke, the Rio Grande’s narrow-gauge lines were deprived of the traffic for which they originally had been constructed.

The remaining traffic kept the narrow-gauge system operating but could not justify improvements. By the late 1930s, changing economic conditions and increasing competition from motor vehicles began to render the narrow-gauge components of the Rio Grande unprofitable. The 120-mile narrow-gauge branch from Antonito to Santa Fe, New Mexico, was abandoned in 1941. For the rest of the narrow-gauge system, entry of the United States into World War II later that year was a reprieve, increasing economic activity in the region and restricting the use of motor vehicles. In the decade following the end of hostilities, though, all of the narrow-gauge track, except the railroad from Alamosa to Durango, Silverton, and Farmington, was abandoned.

The former San Juan Extension was spared the fate of the other narrow-gauge lines by the development of a large natural-gas field in northwestern New Mexico. Adjacent to the field was the town of Farmington, New Mexico, terminus of the Rio Grande’s Farmington branch.

The track to Farmington had been built south from Durango in 1905. At the time, there was a vigorous demand for coking coal to be used by copper smelters in southern Arizona. Extensive coal deposits in the San Juan Basin of northwestern New Mexico, it was thought, might satisfy that demand. The Southern Pacific Railroad, through a subsidiary, actually surveyed a route into Durango. To protect its territory, the Rio Grande responded by building south to Farmington; to effectively deter the Southern Pacific, the track was built as standard gauge. San Juan Basin coal, however, was found unsuitable for use in the smelters, so no further construction by either the SP or the D&RG was undertaken. For many years, the branch subsisted by hauling agricultural products and general freight. Eventually, in 1923, the track was narrowed to 36-inch gauge.
Although the Farmington branch had not fulfilled its original purpose as a transportation outlet for coal, the San Juan Basin was also rich in natural gas. After World War II, exploration and development of the natural gas began. Starting in 1952, drilling activities and construction of pipelines to bring the gas to market resulted in daily 70-car trains of supplies. Mostly pipe and drilling mud, the traffic had been transferred from standard- to narrow-gauge cars in Alamosa: from there it moved over Cumbres Pass, through Chama, to destinations on the Farmington branch.

For many years, the westward movement of pipe and drilling supplies more than compensated for the loss of other traffic that had moved over the railroad. Eventually, though, the Rio Grande received authority to substitute motor-truck services for that of the railroad. Freight received at Alamosa often was loaded onto trucks instead of narrow-gauge freight cars. When trucks were not available, or when large shipments of pipe and drilling mud not conveniently handled over the highway were received, narrow-gauge freight trains were operated.

Another category of traffic that had remained with the railroad for many years was crude oil. Extracted from a field northwest of Chama, the oil reached Chama through a pipeline. There, it was loaded into tank cars and moved over Cumbres Pass to a refinery in Alamosa. As the flow of freight into Farmington began to decline in the early 1960’s, the oil remained a regular source of traffic. Even when there was no pipe to move, trains ran over Cumbres Pass to keep the refinery supplied with oil. Then, in September 1964 the refinery closed. The tank cars were sold or scrapped.

After 1964, traffic diminished considerably. In 1967, the D&RG petitioned the Interstate Commerce Commission to abandon the railroad between Antonito, Durango and Farmington, and the request was granted in July of 1969. Subsequently, the D&RG operated the line from Durango to Silverton seasonally until 1981 when this line was sold to the Durango & Silverton Narrow Gauge Railroad (D&SNG).

The D&RG and other Colorado lines represented the largest network of narrow gauge railroads in North America. The Antonito to Chama segment of the D&RG-SJE is a remnant of one of the most important parts of the D&RG, historically speaking. This one piece of railroad preserves a high mountain crossing, two early steel bridges and two tunnels within an almost virgin landscape. While the route has few towns, the buildings along the right-of-way are representative of the small communities railroads developed to maintain track in lonely places. Among the resources are three variations of a prototype section house used across the entire D&RG system: prototype designs represent an example of military thinking applied by railroads after the Civil War and now common throughout the world. One end of the line also preserves a typical railroad division point, with locomotive servicing facilities, a marshalling yard and depot.

The locomotive and rolling stock are perhaps the most important aspects of the D&RG-SJE. With very few exceptions, the equipment is native to the railroad and dates from the late 1880s to World War II.
Further, from the locomotive to the caboose, representative examples of almost every type of freight car survive on the line today. The collection of maintenance-of-way equipment is exceptional. It includes one of the oldest surviving rotary snow plows, the only narrow gauge spreader constructed by the Jordan Company and all the other track-mounted rolling stock necessary to keep the railroad functioning. This collection is unmatched among any in the nation.

The rugged terrain and the low density of population of northern New Mexico and southwestern Colorado remain one of the most seldom-seen parts of our land. For half a century, the railroad was the only means of transportation between Colorado’s eastern slope and the mountain basins of southwest Colorado and northern New Mexico. The railroad brought the people in to settle this lonely land, and the railroad took to market the many riches the people found here. Gold, silver and other minerals, lumber, beans, livestock and other goods moved by the trainload over this busy little railroad. The line also traces the development of our energy resources. It may have been located to take advantage of the coal deposits west of Chama; later oil moved across the railroad in tank cars, and it is likely that materials for the Manhattan Project traveled across D&RG-SJE rails. The line bridges the era from the gold rush to the atom bomb.

Today, a ride across the D&RG-SJE on the C&TS is literally a trip back in time. It is exceptional for the experience combining a steam-powered train passing through grasslands and mountains that leaves the visitor wondering if it is 1925, 1945 or 2005. The ride is outstanding due to the cohesive nature of the breadth of historic equipment and structures that stand along the line. It is truly a property of national significance.
BIBLIOGRAPHY

The precursor to the Cumbres & Toltec Scenic Railroad, the Denver & Rio Grande Railway and its successor companies are among the most documented of all railroads—both in narrative and photographs. The following is a brief list of the sources consulted for the nomination:

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico

Railroads in Colorado 1858-1948 MPS

Section number 9 Page 64

Interstate Commerce Commission, Bureau of Evaluation, D&RGW 4th Division, 2nd District Valuation Sections: Colorado 16 and New Mexico 2, 1920.

Stations and Structures, Antonito-Chama, 1901 and 1905.

Structure Numbering System, CRRM SB 398 and 399, 1920.

GEOGRAPHICAL DATA

UTM REFERENCES

All UTM reference points utilize the NAD27 datum and were computed using the online mapping services of TopoZone.com.

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antonito, CO 1967, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>13</td>
<td>409845</td>
<td>4102805</td>
<td>Track immediately west of US Highway 285 crossing</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>410271</td>
<td>4102812</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>410290</td>
<td>4102995</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>410055</td>
<td>4102945</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>406834</td>
<td>4100616</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>405656</td>
<td>4100075</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>404905</td>
<td>4099114</td>
<td>Section line</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>403564</td>
<td>4098024</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>403608</td>
<td>4097166</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>403230</td>
<td>4096627</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>403701</td>
<td>4096432</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>402447</td>
<td>4095996</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>402730</td>
<td>4095733</td>
<td>End of quad</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>402179</td>
<td>4095253</td>
<td></td>
</tr>
<tr>
<td>Los Pinos, NM-CO 1995, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>402179</td>
<td>4094687</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>402859</td>
<td>4094294</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>403522</td>
<td>4094672</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>403659</td>
<td>4094726</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>403783</td>
<td>4094672</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>403803</td>
<td>4094562</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>403345</td>
<td>4094008</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>13</td>
<td>402604</td>
<td>4093557</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>13</td>
<td>402443</td>
<td>4093228</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>13</td>
<td>402819</td>
<td>4093055</td>
<td>Switch point</td>
</tr>
<tr>
<td>25</td>
<td>13</td>
<td>403007</td>
<td>4092938</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>13</td>
<td>402839</td>
<td>4092853</td>
<td>Track at Lava water tank</td>
</tr>
<tr>
<td>27</td>
<td>13</td>
<td>402827</td>
<td>4092677</td>
<td>Pipeline</td>
</tr>
<tr>
<td>28</td>
<td>13</td>
<td>402959</td>
<td>4092267</td>
<td>Pipeline</td>
</tr>
<tr>
<td>29</td>
<td>13</td>
<td>402961</td>
<td>4092221</td>
<td>Pumphouse</td>
</tr>
<tr>
<td>30</td>
<td>13</td>
<td>402602</td>
<td>4093006</td>
<td>Switch point</td>
</tr>
<tr>
<td>Point Number</td>
<td>Zone</td>
<td>Easting</td>
<td>Northing</td>
<td>Location Notes</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>---------</td>
<td>----------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Los Pinos, NM-CO 1995 (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>13</td>
<td>402134</td>
<td>4093067</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>13</td>
<td>400724</td>
<td>4092928</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>13</td>
<td>400427</td>
<td>4093347</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>13</td>
<td>399875</td>
<td>4093588</td>
<td>End of quad</td>
</tr>
<tr>
<td>Bighorn Peak, NN-CO, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>13</td>
<td>399482</td>
<td>4093883</td>
<td>Directly north of bench mark</td>
</tr>
<tr>
<td>36</td>
<td>13</td>
<td>399050</td>
<td>4093758</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>13</td>
<td>399038</td>
<td>4094114</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>13</td>
<td>398567</td>
<td>4094431</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>13</td>
<td>398423</td>
<td>4094716</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>40</td>
<td>13</td>
<td>398235</td>
<td>4094901</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>13</td>
<td>397991</td>
<td>4094789</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>13</td>
<td>397793</td>
<td>4094879</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>13</td>
<td>397404</td>
<td>4094720</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>44</td>
<td>13</td>
<td>397199</td>
<td>4094718</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>45</td>
<td>13</td>
<td>397270</td>
<td>4094904</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>13</td>
<td>397611</td>
<td>4094972</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>13</td>
<td>398064</td>
<td>4095285</td>
<td>End of quad</td>
</tr>
<tr>
<td>Fox Creek, CO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>13</td>
<td>397926</td>
<td>4095630</td>
<td>End of quad</td>
</tr>
<tr>
<td>49</td>
<td>13</td>
<td>397713</td>
<td>4095290</td>
<td>End of quad</td>
</tr>
<tr>
<td>Bighorn Peak, NN-CO, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>13</td>
<td>397428</td>
<td>4095010</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>13</td>
<td>396981</td>
<td>4094998</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>13</td>
<td>396410</td>
<td>4094789</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>13</td>
<td>396075</td>
<td>4094898</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>13</td>
<td>395692</td>
<td>4094755</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>13</td>
<td>395163</td>
<td>4094803</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>13</td>
<td>395102</td>
<td>4094728</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>57</td>
<td>13</td>
<td>395126</td>
<td>4094389</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>13</td>
<td>395252</td>
<td>4094381</td>
<td>End of Big Horn wye</td>
</tr>
<tr>
<td>59</td>
<td>13</td>
<td>395079</td>
<td>4094245</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>13</td>
<td>394748</td>
<td>4094091</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>13</td>
<td>394563</td>
<td>4094286</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>13</td>
<td>393974</td>
<td>4094398</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>13</td>
<td>393373</td>
<td>4094259</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>13</td>
<td>393124</td>
<td>4093730</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>13</td>
<td>393038</td>
<td>4093372</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>13</td>
<td>392941</td>
<td>4093864</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>13</td>
<td>392942</td>
<td>4094371</td>
<td></td>
</tr>
</tbody>
</table>
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bighorn Peak, NN-CO (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>13</td>
<td>392354</td>
<td>4093996</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>13</td>
<td>392308</td>
<td>4093697</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>13</td>
<td>392067</td>
<td>4093707</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>13</td>
<td>392099</td>
<td>4092914</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>13</td>
<td>392127</td>
<td>4092732</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>13</td>
<td>391707</td>
<td>4092718</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>13</td>
<td>391583</td>
<td>4092425</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>13</td>
<td>391393</td>
<td>4092796</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>13</td>
<td>391423</td>
<td>4093706</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>13</td>
<td>391747</td>
<td>4094298</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>13</td>
<td>391226</td>
<td>4093967</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>13</td>
<td>390723</td>
<td>4094209</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>13</td>
<td>390507</td>
<td>4094044</td>
<td>Sublette tank and standpipe</td>
</tr>
<tr>
<td>82</td>
<td>13</td>
<td>390144</td>
<td>4093977</td>
<td>Head of pipeline</td>
</tr>
<tr>
<td>83</td>
<td>13</td>
<td>390615</td>
<td>4093710</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>13</td>
<td>390845</td>
<td>4093636</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>13</td>
<td>390611</td>
<td>4092511</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>13</td>
<td>390041</td>
<td>4092530</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>13</td>
<td>389690</td>
<td>4092657</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>13</td>
<td>389293</td>
<td>4092146</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>13</td>
<td>388805</td>
<td>4092194</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>13</td>
<td>388736</td>
<td>4092374</td>
<td>End of quad</td>
</tr>
</tbody>
</table>

Toltec Mesa, NM-CO, USGS Quad Map

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>13</td>
<td>388364</td>
<td>4092519</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>13</td>
<td>387926</td>
<td>4092397</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>13</td>
<td>387802</td>
<td>4092653</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>13</td>
<td>387358</td>
<td>4093025</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>13</td>
<td>387348</td>
<td>4093272</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>13</td>
<td>386884</td>
<td>4093507</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>13</td>
<td>386585</td>
<td>4093286</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>13</td>
<td>386213</td>
<td>4093796</td>
<td>Beginning of boundary extension</td>
</tr>
<tr>
<td>99</td>
<td>13</td>
<td>385984</td>
<td>4094087</td>
<td>Mud Tunnel (center point)</td>
</tr>
<tr>
<td>100</td>
<td>13</td>
<td>385991</td>
<td>4094373</td>
<td>End of boundary extension</td>
</tr>
<tr>
<td>101</td>
<td>13</td>
<td>385909</td>
<td>4094684</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>13</td>
<td>385627</td>
<td>4094621</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>13</td>
<td>385511</td>
<td>4094794</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>104</td>
<td>13</td>
<td>385793</td>
<td>4095106</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>13</td>
<td>385526</td>
<td>4095446</td>
<td>End of quad</td>
</tr>
</tbody>
</table>
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet
Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osier, CO, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>13</td>
<td>385223</td>
<td>4095779</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>13</td>
<td>385050</td>
<td>4095784</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>13</td>
<td>384821</td>
<td>4096141</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>13</td>
<td>384577</td>
<td>4095599</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>13</td>
<td>384587</td>
<td>4095460</td>
<td>End of quad</td>
</tr>
<tr>
<td>Toltec Mesa, NM-CO, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>13</td>
<td>384554</td>
<td>4094808</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>112</td>
<td>13</td>
<td>384566</td>
<td>4094577</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>13</td>
<td>383941</td>
<td>4093905</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>13</td>
<td>383800</td>
<td>4093720</td>
<td>Lava Tunnel (center point)</td>
</tr>
<tr>
<td>115</td>
<td>13</td>
<td>383568</td>
<td>4094423</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>13</td>
<td>383211</td>
<td>4094619</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>13</td>
<td>382908</td>
<td>4094582</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>13</td>
<td>382368</td>
<td>4094832</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>119</td>
<td>13</td>
<td>382060</td>
<td>4095149</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>13</td>
<td>381926</td>
<td>4095492</td>
<td>End of quad</td>
</tr>
<tr>
<td>Osier, CO, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>13</td>
<td>381858</td>
<td>4095869</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>13</td>
<td>381455</td>
<td>4096003</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>13</td>
<td>381540</td>
<td>4096312</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>13</td>
<td>381442</td>
<td>4096473</td>
<td>Beginning of boundary extension</td>
</tr>
<tr>
<td>125</td>
<td>13</td>
<td>381190</td>
<td>4096955</td>
<td>Track at Osier water tank</td>
</tr>
<tr>
<td>126</td>
<td>13</td>
<td>381244</td>
<td>4097210</td>
<td>Stream crossing</td>
</tr>
<tr>
<td>127</td>
<td>13</td>
<td>381053</td>
<td>4097214</td>
<td>Stream crossing</td>
</tr>
<tr>
<td>128</td>
<td>13</td>
<td>380877</td>
<td>4097044</td>
<td>Stream crossing</td>
</tr>
<tr>
<td>129</td>
<td>13</td>
<td>380803</td>
<td>4096888</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>13</td>
<td>380342</td>
<td>4096471</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>13</td>
<td>380181</td>
<td>4096542</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>13</td>
<td>377954</td>
<td>4096001</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>13</td>
<td>377839</td>
<td>4096070</td>
<td>Long Creek</td>
</tr>
<tr>
<td>134</td>
<td>13</td>
<td>377657</td>
<td>4095903</td>
<td>End of quad</td>
</tr>
<tr>
<td>Cumbres, CO, USGS Quad Map</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>13</td>
<td>376967</td>
<td>4095884</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>13</td>
<td>375115</td>
<td>4097130</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>13</td>
<td>375322</td>
<td>4099193</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>13</td>
<td>374671</td>
<td>4100485</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>13</td>
<td>374881</td>
<td>4099577</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>13</td>
<td>374789</td>
<td>4098991</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>13</td>
<td>374381</td>
<td>4097878</td>
<td>Stream crossing</td>
</tr>
<tr>
<td>142</td>
<td>13</td>
<td>374418</td>
<td>4097644</td>
<td></td>
</tr>
</tbody>
</table>
Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>13</td>
<td>374058</td>
<td>4097076</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>13</td>
<td>373800</td>
<td>4097059</td>
<td>Road crossing</td>
</tr>
<tr>
<td>145</td>
<td>13</td>
<td>371955</td>
<td>4097703</td>
<td>Cumbres Creek crossing</td>
</tr>
<tr>
<td>146</td>
<td>13</td>
<td>371696</td>
<td>4097595</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>13</td>
<td>371447</td>
<td>4097124</td>
<td>Closest point to track above</td>
</tr>
<tr>
<td>148</td>
<td>13</td>
<td>371583</td>
<td>4096799</td>
<td></td>
</tr>
<tr>
<td>149</td>
<td>13</td>
<td>371426</td>
<td>4097133</td>
<td>Closest point to track below</td>
</tr>
<tr>
<td>150</td>
<td>13</td>
<td>371519</td>
<td>4097637</td>
<td>Beginning of boundary expansion</td>
</tr>
<tr>
<td>151</td>
<td>13</td>
<td>371200</td>
<td>4097799</td>
<td>Center point of wye</td>
</tr>
<tr>
<td>152</td>
<td>13</td>
<td>371218</td>
<td>4098091</td>
<td>End point of wye</td>
</tr>
<tr>
<td>153</td>
<td>13</td>
<td>370973</td>
<td>4097713</td>
<td>End of boundary expansion Quad Map</td>
</tr>
<tr>
<td>154</td>
<td>13</td>
<td>370485</td>
<td>4097502</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>13</td>
<td>370241</td>
<td>4098086</td>
<td>Stream crossing</td>
</tr>
<tr>
<td>156</td>
<td>13</td>
<td>369828</td>
<td>4097994</td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>13</td>
<td>369498</td>
<td>4098136</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>13</td>
<td>370132</td>
<td>4097107</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>13</td>
<td>369556</td>
<td>4096287</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>13</td>
<td>368631</td>
<td>4095983</td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>13</td>
<td>368408</td>
<td>4095697</td>
<td>End of quad</td>
</tr>
</tbody>
</table>

West Fork Rio Brazos, NM-CO, USGS Quad Map
West Fork Rio Brazos, NM-CO (Continued)

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>162</td>
<td>13</td>
<td>368365</td>
<td>4095610</td>
<td>County boundary</td>
</tr>
<tr>
<td>163</td>
<td>13</td>
<td>368214</td>
<td>4095532</td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>13</td>
<td>367681</td>
<td>4095585</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>13</td>
<td>367242</td>
<td>4095475</td>
<td>Colorado-New Mexico border</td>
</tr>
<tr>
<td>166</td>
<td>13</td>
<td>366697</td>
<td>4095035</td>
<td>End of quad</td>
</tr>
<tr>
<td>167</td>
<td>13</td>
<td>366518</td>
<td>4094803</td>
<td></td>
</tr>
</tbody>
</table>

Chama, NM-CO, USGS Quad Map

<table>
<thead>
<tr>
<th>Point Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>168</td>
<td>13</td>
<td>366195</td>
<td>4094556</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>13</td>
<td>366154</td>
<td>4094155</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>13</td>
<td>365837</td>
<td>4093664</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>13</td>
<td>365681</td>
<td>4093571</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>13</td>
<td>365486</td>
<td>4092961</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>13</td>
<td>365046</td>
<td>4092353</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>13</td>
<td>364246</td>
<td>4091768</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>13</td>
<td>363207</td>
<td>4090995</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>13</td>
<td>362745</td>
<td>4091101</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>13</td>
<td>362851</td>
<td>4090847</td>
<td></td>
</tr>
</tbody>
</table>
National Register of Historic Places

Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Point

<table>
<thead>
<tr>
<th>Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chama, NM-CO, USGS Quad Map (continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>13</td>
<td>363437</td>
<td>4090166</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>13</td>
<td>362518</td>
<td>4089911</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>13</td>
<td>361358</td>
<td>4087880</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>13</td>
<td>359943</td>
<td>4085976</td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>13</td>
<td>359525</td>
<td>4085443</td>
<td>Beginning of boundary expansion</td>
</tr>
<tr>
<td>183</td>
<td>13</td>
<td>359247</td>
<td>4084569</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>13</td>
<td>359075</td>
<td>4084383</td>
<td>Center of wye</td>
</tr>
<tr>
<td>185</td>
<td>13</td>
<td>359229</td>
<td>4084233</td>
<td>End of wye</td>
</tr>
<tr>
<td>186</td>
<td>13</td>
<td>358654</td>
<td>4083900</td>
<td>End of track</td>
</tr>
</tbody>
</table>

Historic Antonito Depot – Discontiguous resource
Antonito, CO 1967, USGS Quad Map

<table>
<thead>
<tr>
<th>Number</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Location Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>13</td>
<td>410478</td>
<td>4103319</td>
<td>Less than one arce parcel encompassing the depot and its historic platform area</td>
</tr>
</tbody>
</table>

Verbal Boundary Description

The boundary definition in the original nomination was ambiguous. The map accompanying the nomination delineated four large, contiguous, rectangular parcels that broadly enclosed the full extent of the railroad corridor. However, there is no indication that these were intended to form the formal boundaries. The nomination form did not provide an approximate acreage of the nominated property. The first paragraph of the narrative description summarizes the resources as including only the 64-mile rail line and the directly associated railroad structures and buildings. The current amendment proposes to clarify the boundaries by providing a specific description related to the property’s significance and integrity. The clarified boundary consists of a narrow corridor containing the historic right-of-way and associated resources from Antonito, Colorado, to Chama, New Mexico, more specifically described as:

1. **Antonito, MP 280.70 – MP 281.5, 100'-0" outside of return loop plus land within loop.**
2. **Antonito-Lava, MP 281.5 - MP 291.25, 100'-0" each side of track center line.**
3. **Lava, MP 291.25 - MP 291.75 [2011+10-2050], 100'-0" outside of track center line, land within loop, 12'-6" each side of pipe line, plus 300'-0" x 350'-0" parcel at pump house. Extended parcel defines water pipeline and pump house on Los Pinos River.**
4. **Lava-Big Horn Section House, MP 291.75 - MP 295.05, 100'-0" each side of track center line.**
5. **Big Horn Section House/ Whiplash Curve, MP 295.05 - MP 298.0, 100'-0" outside of track center line plus land within loop. Extended parcel defines land within a significant track feature and preserves sites of demolished structures related to the railroad.**
6. **Big Horn Section House-Sublette, MP 298.0 - MP 305.75, 100'-0" each side of track center line.**
7. **Sublette, MP 305.75 - MP 306.25, 100'-0" outside of track center line, land within loop, 12'-6" each side of pipe line and 100’ x 100’ parcel at well. Extended parcel defines water pipeline to source.**
8. **Sublette-Tunnel No. 1, MP 306.25 - MP 311.0, 100'-0" each side of track center line Mud**
Tunnel, MP 311.0 - MP 311.75, 100'-0” north side of track center line and 600'-0” south side of track center line. Extended parcel defines historic temporary right-of-way.

9. **Tunnel No. 1-Phantom Curve**, MP 311.75 - MP 312.1, 100'-0” each side of track center line.

10. **Phantom Curve**, MP 312.1 - MP 312.5, 100'-0” north side of track center line plus land within loop. Extended parcel defines significant geologic feature within loop.

11. **Phantom Curve-Osier**, MP 312.5 - MP 318.0, 100'-0” each side of track center line.

12. **Osier**, MP 318.0 - MP 319.0, 350'-0” north side of track center line, 300'-0” south side of track center line plus 12'-6” each side of two pipelines to source. Extended parcel defines water pipe lines to source.

13. **Osier-Cumbres**, MP 319.0 - MP 329.25, 100'-0” each side of track center line.

14. **Cumbres/Tanglefoot Curve**, MP 329.25 - MP 330.3, 100'-0” south side of track center line plus land within loop. Extended parcel defines land within loop.

15. **Cumbres**, MP 330.3 - MP 330.75, 150'-0” south side of track center line, 300'-0” north side of track center line, plus 50'-0” each side of track center line at wye.

16. **Cumbres-Conchar-Archoleta County Line**, MP 330.75 - MP 334.5, 100'-0” each side of track center line.

17. **Conchar-Archoleta County Line- Chama**, MP 334.5 - MP 343.5, 50'-0” each side of track center line.

18. **Chama**, MP 343.5 - MP 344.80, 100'-0” north side of track center line, 200'-0” south side of track center line, plus 25'-0” each side of track center line at wye.

19. **Antonito Depot- historic**, a discontiguous triangular parcel described as follows: The land included consists of a parcel in the Town of Antonito, Conejos County, Colorado, and lying the exterior boundary of the Antonito Depot Tract, located in the NE ¼ of Section 29, Township 33 North, Range 9 East, of the New Mexico Principal Meridian, Conejos County, Colorado, being more particularly described as follows:

 Beginning at a point on the North right of way line of Second Avenue of said Town of Antonito from which the East ¼ Corner of said Section 29 (monumented with a No.6 re-bar with a 2 ½ inch aluminum cap set by Colorado PLS No. 14840) bears South 76° 06’ 02” East a distance of 1837.68 feet; thence North 90° 00’ 00” West along said North right of way line a distance of 120.25 feet; thence North 03° 39’ 35” West a distance of 209.16 feet; thence Northeasterly along the arc of a non-tangent curve to the left a distance of 244.72 feet (curve data: Radius = 147.14 feet, Delta = O9° 31’ 52”, Chord length = 244.44 feet Chord Bearing = North 17° 26’ 02” East); thence North 86° 30’ 23” East a distance of 32.03 feel; thence South 03° 39’ 35” East a distance of 444.80 feet to the Point of Beginning; containing 0.97 acres more or less.

BOUNDARY JUSTIFICATION

Boundaries are based on *Interstate Commerce Commission valuation maps* dated 1919 in the Robert W. Richardson Railroad Library Collection, and available from the Colorado Railroad Museum. These indicate the property limits that were the basis for property tax valuation used by the states of Colorado and New Mexico. In general, the historic right-of-way (ROW) extends on 100'-0” each side of the track.
centerline. The exception is west from the Archuleta County-Conejos County boundary in Colorado to Chama, where the original ROW extended 50'-0" each side of the track center line.

Locations with significant track configurations, such as loops, include the land within the loop. In some cases, this avoids overlap and in other instances, it preserves a significant feature or site. Water is a precious resource in the west, and the railroad took pains to protect water rights used for water tanks. This includes the definition of pipe line ROW’s extending beyond the track ROW to the river, creek or spring location.

The boundaries at significant place locations, like Antonito, Cumbres and Chama, represent a combination of the dimension from the track center line, and distances indicated on the valuation maps that capture all of the significant resources or features within the boundary.
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number 10 Page 73

USGS TOPOGRAPHIC MAP
Antonito, CO - 1967
7.5 minute Quad (enlarged)

Map center is UTM 13 410418E 4103234N (NAD27)
Antonito quadrangle
Projection is UTM Zone 13 NAD83 Datum
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ____ Page 74

USGS TOPOGRAPHIC MAP
Antonito, CO - 1967
7.5 minute Quad

Map center is UTM 13 409097E 4102269N (NAD27)
Antonito quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.204
G=-0.617
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 76

USGS TOPOGRAPHIC MAP
Antonito, CO - 1967
7.5 minute Quad

Map center is UTM 13 403585E 4097494N (NAD27)
Antonito quadrangle
Projection is UTM Zone 13 NAD83 Datum
Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 78__

USGS TOPOGRAPHIC MAP
Los Pinos, CO-NM - 1995
7.5 minute Quad - Enlarged

Map center is UTM 13 402870E 4092944N (NAD27)
Los Pinos quadrange
Projection is UTM Zone 13 NAD83 Datum

M=10.226
G=-0.657
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 79 ___

USGS TOPOGRAPHIC MAP
Bighorn Peak, CO-NM - 1995
7.5 minute Quad

Map center is UTM 13 399780E 4093684N (NAD27)

Bighorn Peak quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.247
G=-0.070
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ____ Page 81

Map center is UTM 13 394365E 4094293N (NAD27)
Bighorn Peak quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.272
G=-0.715
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 82

USGS TOPOGRAPHIC MAP
Bighorn Peak, CO-NM - 1995
7.5 minute Quadrangle

Map center is UTM 13 391408E 4092739N (NAD27)
Bighorn Peak quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.286
G=-0.734
NRPS Form 10-900a
(Rev. 8/86)

United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ____ Page 84

USGS TOPOGRAPHIC MAP
Bighorn Peak, CO-NM - 1995
7.5 minute Quad

Map center is UTM 13 388792E 4092826N (NAD27)
Bighorn Peak quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.3
G=-0.752
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 85__

USGS TOPOGRAPHIC MAP
Toltec Mesa, CO-NM - 1995
7.5 minute Quad

Map center is UTM 13 386196E 4093822N (NAD27)

Projection is UTM Zone 13 NAD83 Datum
USGS TOPOGRAPHIC MAP
Bighorn Peak, CO-NM - 1995
7.5 minute Quad

Map center is UTM 13 390492E 4094265N (NAD27)
Bighorn Peak quadrangle
Projection is UTM Zone 13 NAD83 Datum
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico

Railroads in Colorado 1858-1948 MPS

USGS TOPOGRAPHIC MAP
Bighorn Peak, CO-NM - 1995
7.5 minute Quad

Map center is UTM 13 388792E 4092826N (NAD27)
Bighorn Peak quadrangle
Projection is UTM Zone 13 NAD83 Datum
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 90

USGS TOPOGRAPHIC MAP
Toltec Mesa, CO-NM - 1995
7.5 minute Quad

Map center is UTM 13 383915E 4095239N (NAD27)
Toltec Mesa quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.320
G=-0.786
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet
Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 91

USGS TOPOGRAPHIC MAP
Osier, CO - 1967
7.5 minute Quad
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 93__

USGS TOPOGRAPHIC MAP
Cumbres, CO - 2001
7.5 minute Quad

Map center is UTM 13 374664E 4097876N (NAD27)
Cumbres quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.379
G=-0.849
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ____ Page 94

USGS TOPOGRAPHIC MAP
Cumbres, CO - 2001
7.5 minute Quad

Map center is UTM 13 374584E 4099329N (NAD27)
Cumbres quadrangle
Projection is UTM Zone 13 NAD83 Datum
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 95 ___

USGS TOPOGRAPHIC MAP
Cumbres, CO - 2001
7.5 minute Quad

Map center is UTM 13 372207E 4097404N (NAD27)
Cumbres quadrangle
Projection is UTM Zone 13 NAD83 Datum
National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

USGS TOPOGRAPHIC MAP
Cumbres, CO - 2001
7.5 minute Quad - Enlarged

Map center is UTM 13 371258E 4097570N (NAD27)
Cumbres quadrange
Projection is UTM Zone 13 NAD83 Datum

UTM No. 149
UTM No. 150
UTM No. 151
UTM No. 152
UTM No. 153

Section number ___ Page 96___
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ___ Page 98

USGS TOPOGRAPHIC MAP
West Fork Rio Brazos, CO-NM - 1995
7.5 minute Quad

Map center is UTM 13 367366E 4095484N (NAD27)
West Fork Rio Brazos quadrangle
Projection is UTM Zone 13 NAD83 Datum
Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

USGS TOPOGRAPHIC MAP
Chama, CO-NM - 1983
7.5 minute Quad

Map center is UTM 13 360787E 4087142N (NAD27)
Chama quadrangle
Projection is UTM Zone 13 NAD83 Datum
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

Section number ____ Page 102

USGS TOPOGRAPHIC MAP
Chama, CO-NM - 1983
7.5 minute Quad

Map center is UTM 13 359228E 4084552N (NAD27)
Chama quadrangle
Projection is UTM Zone 13 NAD83 Datum

M=10.442
G=-0.949
United States Department of the Interior
National Park Service

National Register of Historic Places
Continuation Sheet

Denver & Rio Grande Railroad San Juan Extension
Conejos and Archuleta Counties, Colorado
Rio Arriba County, New Mexico
Railroads in Colorado 1858-1948 MPS

PROPERTY OWNERS

States of Colorado and New Mexico
c/o Cumbres & Toltec Scenic Railroad Commission
Attn: Mr. Leo Schmidt, Executive Director
PO Box 561
Antonito, CO 81120

Historic Antonito Depot
Town of Antonito
Attn: The Honorable Raphael Gallegos, Mayor
PO Box 86
Antonito, CO 81120

Colorado Department of Transportation
4201 E. Arkansas Avenue
Denver, CO 80222
PHOTOGRAPHS

All photographs were taken by Tom Cardin
Negatives for all photographs are on file at the offices of the Friends of the Cumbres & Toltec Scenic Railroad. Photo location and views are mapped on the individual site plans in section 7 or, where such plans to not exist, on the topographic map sections beginning on page 73.

1. West side of the D&RG stone depot in Antonito looking northeast, milepost 280.3

2. East side of D&RG stone depot in Antonito looking northwest, milepost 280.3
 Antonito, Conejos County, Colorado. Exposed 9-19-05

3. New Cumbres & Toltec depot, in Antonito, milepost 280.75
 View, is looking northwest, of the outside waiting area and east face of the building
 Antonito, Conejos County, Colorado. Exposed 9-14-05

4. View, looking southwest, towards Highway 285, showing (l to r) water tank and storage shed,
 with dual gauge switch in foreground. Antonito, Conejos County, Colorado. Exposed 9-14-05

5. Coach 504/ Sublette, a 1993/1997 coach, in the yard in Antonito looking north
 Antonito Conejos County, Colorado. Exposed 9-14-05

 Exposed 9-14-05

7. Standard gauge outside braced box-cars 66306, 66977 and idler car 010793 on dual gauge
 display track, in Antonito. View looks south with the engine house in the background.
 Antonito, Conejos County, Colorado. Exposed 9-14-05

8. Idler car 010793 and standard gauge box-car on dual gauge display track in Antonito
 The view looks southwest towards the engine house. Antonito, Conejos County, Colorado
 Exposed 9-14-05

9. Hangman’s trestle, at milepost 285.87, looking east. Conejos County, Colorado
 Exposed 9-14-05

10. Lava tank, looking west, with train in background, milepost 291.55
 Lava, Rio Arriba County, New Mexico. Exposed 9-14-05

11. View of Whiplash curve at Big Horn Section House, looking northeast, milepost 296. The south
 end of the curve can be seen just to the right of lower center of the image.
 Big Horn Section House, Conejos County, Colorado. Exposed 9-14-05
12. Milepost 298 looking southwest: train proceeding to Big Horn Siding. Bighorn Peak is at the center of the image. Big Horn Siding, Rio Arriba County, New Mexico. Exposed 9-14-05

13. West switch of Big Horn wye looking south, milepost 299.41. Bighorn Peak is to the right. Big Horn Siding, Rio Arriba County, New Mexico. Exposed 9-14-05

14. Sublette, New Mexico looking southwest, milepost 306.06. From left to right buildings are, shingle bunk house, log bunk house, section house and coal storage shed. Sublette, Rio Arriba County, New Mexico. Exposed 9-14-05

15. West portal of Tunnel Number One, milepost 311.3. View to the southeast. Rio Arriba County, New Mexico. Exposed 9-14-05

16. Phantom Curve, looking south towards geological formation at milepost 312.30 Conejos County, Colorado. Exposed 9-14-05

17. West portal of Tunnel Number Two at Toltec Gorge, milepost 315.2. View to the southeast. Rio Arriba County, New Mexico. Exposed 9-14-05

18. Garfield monument at the west portal of Tunnel Number Two. The west portal of the tunnel is at the center of the image. View to the southeast. Rio Arriba County, New Mexico. Exposed 9-14-05

19. Osier, Colorado, looking northwest. From left to right are the section house, water tank and depot at milepost 318.4. Osier, Conejos County, Colorado. Exposed 9-14-05

20. Osier, Colorado, looking west. From left to right are the water tank, section house and depot. Osier, Conejos County Colorado. Exposed 9-14-05

21. Osier, Colorado looking southwest. The dining hall is beyond the train and the stock pens are in the foreground. The train is west bound. Osier, Conejos County, Colorado Exposed 9-14-05

22. Osier Colorado looking southeast. From left to right are the depot, water tank, section house and dining hall. Osier, Conejos County, Colorado. Exposed 9-14-05

23. Cascade Creek Trestle looking back east, towards Osier, milepost 319.95 Conejos County, Colorado. Exposed 9-14-05

24. Los Pinos water tank looking south at milepost 325.50 Los Pinos, Conejos County Colorado. Exposed 9-14-05
25. Train on upper portion of Tanglefoot Curve approaching Cumbres, Colorado. The train is west bound and is approaching milepost 330, the white post on the right of the image. View to the southwest. Cumbres, Conejos County, Colorado. Exposed 9-14-05

26. Cumbres, Colorado, looking northwest at milepost 330.60. From left to right are the section house, storage buildings and car inspector’s house. Cumbres, Conejos County Colorado. Exposed 9-22-05

27. Cumbres section house, looking east. The water column is at the left side of the image. Cumbres, Conejos County Colorado. Exposed 9-22-05

28. Windy Point, looking northeast from the telegraphone booth at Coxo, Colorado, near milepost 332.5. Conejos County Colorado. Exposed 9-14-05

29. Cresco, Colorado water tank, looking northeast, milepost 335.10. Cresco, Conejos County Colorado. Exposed 9-14-05

30. Lobato Trestle, looking north at milepost 339.75. Rio Arriba County, New Mexico. Exposed 9-14-05

32. West end of the bridge over the Rio Chama. Looking northeast. Rio Arriba County, New Mexico. Exposed 9-08-05

34. North end of Chama yards. From left to right are the water tank, warehouse, coal tipple and roundhouse. View to the northeast. Chama, Rio Arriba County, New Mexico. Exposed 9-16-05

35. Livestock loading pens near milepost 344.5 looking east. Chama, Rio Arriba, County, New Mexico. Exposed 9-15-05

37. Chama depot. View looks southwest, with the passenger waiting room to the right of the image. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05
38. The north end of Chama yards. From left to right are the warehouse, water tank, outbuildings coal tipple and sand house/ storage bunker. Chama, Rio Arriba, county, New Mexico Exposed 9-12-05

39. Warehouse looking northwest. Milepost 344 is in the foreground Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

40. Log bunkhouse looking northwest. Chama, Rio Arriba County, New Mexico Exposed 9-12-05

41. Scale house, and scale pit looking northwest. The rails have been removed as part of on-going preservation work. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

42. North end of the roundhouse: the two remaining stalls are on the right. View to the south. Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

43. The north end of the roundhouse. The new engine house is on the left Locomotive 487 is to the left, an unidentified speeder is at the center of the image, and MW02 is to the right. The original roundhouse is to the far right of the image Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

44. The oil depot, looking south. From left to right are the water tank, outbuildings, roundhouse, coal tipple, warehouse, car body bunk house, and log bunk house Chama, Rio Arriba, County, New Mexico. Exposed 9-12-05

45. Rider boxcar 203, former boxcar 3719 Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

46. 1993/ 1997 conversion passenger car 523/Los Pinos Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

47. Pipe gondola 9615. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

48. Drop bottom gondola 727. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

49. Pipe gondola 1557. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

50. Pipe Gondola 1557. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

51. Union Tank Car 12757. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

52. Long refrigerator 157. The car has been painted, but has yet to be lettered in this view Chama, Rio Arriba County, New Mexico. Exposed 9-12-05
53. Stock car 5549, an example of a double-deck car used to haul sheep
 Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

54. Boxcar 3539. Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

55. Steel flatcar 6649. Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

56. Short refrigerator 55. This car is being restored
 Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

57. Flat car 6314. Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

58. Converted caboose 0306, former boxcar 3060
 Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

59. Converted caboose 05635, with new siding, awaiting windows to be cut in. This is former stock
car 5635. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

60. Wheel and tie car 06092. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

61. Flanger OL. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

62. Derrick OP and boom car 0603. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

63. Rotary snow plow OM and tender. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

64. Rotary snow plow OY and tender. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

65. Cook Car 053. This was once railway post office car 53
 Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

66. Tool car 04549. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

67. Rail and tie car 06051. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

68. Track inspection car MW02, lettered 108 in error
 Chama, Rio Arriba County, New Mexico. Exposed 9-21-05

69. Derrick OP and boom car 06063. Chama, Rio Arriba County, New Mexico
 Exposed 9-12-05

70. Jordan spreader OU. The operator’s cabin and rear-most blades have been removed for
 restoration in 2005. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05
71. Cable Car 04426. Chama, Rio Arriba County, New Mexico. Exposed 9-12-05

72. Locomotive 488, a K-36 class locomotive. Chama, Rio Arriba County, New Mexico Exposed 9-13-05

73. Locomotive 487, a K-36 class locomotive. Chama, Rio Arriba County, New Mexico Exposed 9-13-05

74. Locomotives 463, a K-27 class locomotive, 497, a K-37 class locomotive and 484, a K-36 class locomotive. In 2005, locomotives 463 and 497 are in storage. Chama, Rio Arriba County, New Mexico. Exposed 1994